Blobworld Texture Features

Prepared by Dong-Hui Xu DePaul University Chicago

Feature Extraction

- Input: image
- Output: pixel features
 - Color features
 - Texture features
 - Position features
- Algorithm: Select an appropriate scale for each pixel and extract features for that pixel at the selected scale

Texture Scale

- Texture is a local neighborhood property.
- Texture features computed at a wrong scale would lead to confusion.
- Texture features should be computed at a scale which is appropriate to the local structure being described.

The white rectangles show some sample texture scales from the image.

Scale Selection Terminology

Gradient of the L* component (assuming that the image is in the L*a*b* color space) : VI

• Symmetric Gaussian : $G\sigma(x, y) = G\sigma(x) * G\sigma(y)$

Second moment matrix: $M\sigma(x, y) = G\sigma(x, y) * (\forall I)(\forall I)^T$

Notes: $G\sigma(x, y)$ is a separable approximation to a Gaussian.

 σ is the standard deviation of the Gaussian [0, .5, ... 3.5].

 σ controls the size of the window around each pixel [1 2 5 10 17 26 37 50].

 $M\sigma(x,y)$ is a 2X2 matrix and is computed at different scales defined by σ .

Scale Selection (continued)

 Make use of polarity (a measure of the extent to which the gradient vectors in a certain neighborhood all point in the same direction) to select the scale at which Mσ is computed

Scale Selection (continued)

$$p_{\sigma} = \frac{|E_{+} - E_{-}|}{E_{+} + E_{-}}$$
$$E_{+} = \sum_{x,y} G_{\sigma}(x, y) [\nabla I \cdot \hat{n}]_{+}$$
$$E_{-} = \sum_{x,y} G_{\sigma}(x, y) [\nabla I \cdot \hat{n}]_{-}$$

- n is a unit vector perpendicular to the dominant orientation.
- The notation [x]+ means x if x > 0 else 0

The notation [x]- means x if x < 0 else 0

 We can think of E⁺ and E⁻ as measures of how many gradient vectors in the window are on the positive side and how many are on the negative side of the dominant orientation in the window.

Scale Selection (continued)

- Texture scale selection is based on the derivative of the polarity with respect to scale σ.
- Algorithm:
 - 1. Compute polarity at every pixel in the image for $\sigma_k = k/2$, (k = 0,1...7).
 - 2. Convolve each polarity image with a Gaussian with standard deviation 2k to obtain a smoothed polarity image.
 - 3. For each pixel, the selected scale is the first value of σ for which the difference between values of polarity at successive scales is less than 2 percent.

Texture Features Extraction

- Extract the texture features at the selected scale
 - Polarity (polarity at the selected scale) : $p = p_{\sigma^*}$
 - Anisotropy : a = 1 λ₂ / λ₁
 λ₁ and λ₂ denote the eigenvalues of M_σ

 λ_2 / λ_1 measures the degree of orientation: when λ_1 is large compared to λ_2 the local neighborhood possesses a dominant orientation. When they are close, no dominant orientation. When they are small, the local neighborhood is constant.

• Local Contrast: $C = 2(\lambda_1 + \lambda_2)^{3/2}$

A pixel is considered homogeneous if $\lambda 1 + \lambda 2 < a$ local threshold

Application to Protein Crystal Images

Original image in PGM (Portable Gray Map) format

- K-mean clustering result (number of clusters is equal to 10 and similarity measure is Euclidean distance)
- Different colors represent different textures

Application to Protein Crystal Images

Original image in PGM (Portable Gray Map) format

- K-mean clustering result (number of clusters is equal to 10 and similarity measure is Euclidean distance)
- Different colors represent different textures

Application to Outdoor Objects

Original image in JPEG (Joint Photographic Experts Group) format

- K-mean clustering result (number of clusters is equal to 10 and similarity measure is Euclidean distance)
- Different colors represent different textures

Application to Outdoor Objects

Original image in JPEG (Joint Photographic Experts Group) format

- K-mean clustering result (number of clusters is equal to 10 and similarity measure is Euclidean distance)
- Different colors represent different textures

References

- Chad Carson, Serge Belongie, Hayit Greenspan, and Jitendra Malik.
 "Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying." IEEE Transactions on Pattern Analysis and Machine Intelligence 2002; Vol 24. pp. 1026-38.
- W. Forstner, "A Framework for Low Level Feature Extraction," Proc. European Conf. Computer Vision, pp. 383-394, 1994.