### Announcements

- Project 4 out today (due Wed March 10)
  - help session, end of class
  - Late day policy: everything must be turned in by Friday March 12



# <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

# Image Segmentation We will consider different methods Already covered: • Intelligent Scissors (contour-based) • Hough transform (model-based) This week: • K-means clustering (color-based) • Discussed in Shapiro • Normalized Cuts (region-based) • Forsyth, chapter 16.5 (supplementary)





### Histogram-based segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color







# Histogram-based segmentation

### Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color

   photoshop demo



Here's what it looks like if we use two colors





### K-means clustering

K-means clustering algorithm

- 1. Randomly initialize the cluster centers,  $c_1, ..., c_K$
- 2. Given cluster centers, determine points in each cluster • For each point p, find the closest c<sub>i</sub>. Put p into cluster i
- 3. Given points in each cluster, solve for c<sub>i</sub>
  Set c<sub>i</sub> to be the mean of points in cluster i
- Set c<sub>i</sub> to be the mean of points in cit.
   If a have abanged repeat Stap 2
- 4. If  $c_i$  have changed, repeat Step 2

Java demo: <a href="http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial\_html/AppletKM.html">http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial\_html/AppletKM.html</a>

### Properties

- Will always converge to some solution
- · Can be a "local minimum"
  - does not always find the global minimum of objective function:

 $\sum_{\text{clusters } i} \quad \sum_{\text{points p in cluster } i} \|p-c_i\|^2$ 

## **Expectation Maximization**

- A popular variant of this clustering method:
  - EM: "Expectation Maximization"
  - each cluster is modeled using a Gaussian
  - E step: "soft assignment" of points to clusters
     probability that a point is in a cluster
  - M step: solve for mean, variance of Gaussian for each cluster

































### Normalize Cut in Matrix Form

**W** is the cost matrix :  $\mathbf{W}(i, j) = c_{i,j}$ ;

**D** is the sum of costs from node i:  $\mathbf{D}(i,i) = \sum_{j} \mathbf{W}(i,j); \quad \mathbf{D}(i,j) = 0$ 

Can write normalized cut as:

$$Ncut(A,B) = \frac{\mathbf{y}^{\mathsf{T}}(\mathbf{D} - \mathbf{W})\mathbf{y}}{\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y}}, \text{ with } \mathbf{y}_{i} \in \{1, -b\}, \mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{l} = 0.$$

- Solution given by "generalized" eigenvalue problem:  $(D-W)y = \lambda Dy \label{eq:matrix}$ 

• Solved by converting to standard eigenvalue problem:  

$$\mathbf{D}^{-\frac{1}{2}}(\mathbf{D}-\mathbf{W})\mathbf{D}^{-\frac{1}{2}}\mathbf{z} = \lambda \mathbf{z}, \quad \text{where } \mathbf{z} = \mathbf{D}^{\frac{1}{2}}\mathbf{y}$$

· optimal solution corresponds to second smallest eigenvector

### · for more details, see

 J. Shi and J. Malik, <u>Normalized Cuts and Image Segmentation</u>, IEEE Conf. Computer Vision and Pattern Recognition(CVPR), 1997
 <u>http://www.cs.washington.edu/education/courses/455/03wi/readings/Ncut.pdf</u>

### Summary

Things to take away from this lecture

- Image histogram
- K-means clustering
- Morphological operations
   dilation, erosion, closing, opening
- Normalized cuts