Announcements

- Project 4 out today (due Wed March 10)
 - help session, end of class
 - Late day policy: everything must be turned in by Friday March 12

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Image Segmentation We will consider different methods Already covered: • Intelligent Scissors (contour-based) • Hough transform (model-based) This week: • K-means clustering (color-based) • Discussed in Shapiro • Normalized Cuts (region-based) • Forsyth, chapter 16.5 (supplementary)

Histogram-based segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color

Histogram-based segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color

 photoshop demo

Here's what it looks like if we use two colors

K-means clustering

K-means clustering algorithm

- 1. Randomly initialize the cluster centers, $c_1, ..., c_K$
- 2. Given cluster centers, determine points in each cluster • For each point p, find the closest c_i. Put p into cluster i
- 3. Given points in each cluster, solve for c_i
 Set c_i to be the mean of points in cluster i
- Set c_i to be the mean of points in cit.
 If a have abanged repeat Stap 2
- 4. If c_i have changed, repeat Step 2

Java demo: http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/AppletKM.html

Properties

- Will always converge to some solution
- · Can be a "local minimum"
 - does not always find the global minimum of objective function:

 $\sum_{\text{clusters } i} \quad \sum_{\text{points p in cluster } i} \|p-c_i\|^2$

Expectation Maximization

- A popular variant of this clustering method:
 - EM: "Expectation Maximization"
 - each cluster is modeled using a Gaussian
 - E step: "soft assignment" of points to clusters
 probability that a point is in a cluster
 - M step: solve for mean, variance of Gaussian for each cluster

Normalize Cut in Matrix Form

W is the cost matrix : $\mathbf{W}(i, j) = c_{i,j}$;

D is the sum of costs from node i: $\mathbf{D}(i,i) = \sum_{j} \mathbf{W}(i,j); \quad \mathbf{D}(i,j) = 0$

Can write normalized cut as:

$$Ncut(A,B) = \frac{\mathbf{y}^{\mathsf{T}}(\mathbf{D} - \mathbf{W})\mathbf{y}}{\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y}}, \text{ with } \mathbf{y}_{i} \in \{1, -b\}, \mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{l} = 0.$$

- Solution given by "generalized" eigenvalue problem: $(D-W)y = \lambda Dy \label{eq:matrix}$

• Solved by converting to standard eigenvalue problem:

$$\mathbf{D}^{-\frac{1}{2}}(\mathbf{D}-\mathbf{W})\mathbf{D}^{-\frac{1}{2}}\mathbf{z} = \lambda \mathbf{z}, \quad \text{where } \mathbf{z} = \mathbf{D}^{\frac{1}{2}}\mathbf{y}$$

· optimal solution corresponds to second smallest eigenvector

· for more details, see

 J. Shi and J. Malik, <u>Normalized Cuts and Image Segmentation</u>, IEEE Conf. Computer Vision and Pattern Recognition(CVPR), 1997
 <u>http://www.cs.washington.edu/education/courses/455/03wi/readings/Ncut.pdf</u>

Summary

Things to take away from this lecture

- Image histogram
- K-means clustering
- Morphological operations
 dilation, erosion, closing, opening
- Normalized cuts