Hough Transform

Reading

- Watt, 10.3-10.4

An edge is not a line...

How can we detect lines?

Finding lines in an image
Option 1:

- Search for the line at every possible position/orientation
- What is the cost of this operation?

Option 2:

- Use a voting scheme: Hough transform

Finding lines in an image

Connection between image (x, y) and Hough (m, b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
- given a set of points (x, y), find all (m, b) such that $y=m x+b$

Finding lines in an image

Connection between image (x, y) and Hough (m, b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
- given a set of points (x, y), find all (m, b) such that $y=m x+b$
- What does a point $\left(x_{0}, y_{0}\right)$ in the image space map to?
- A: the solutions of $b=-x_{0} m+y_{0}$
- this is a line in Hough space

Hough transform algorithm

Typically use a different parameterization

$$
d=x \cos \theta+y \sin \theta
$$

- d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis
- Why?

Hough transform algorithm

Typically use a different parameterization

$$
d=x \cos \theta+y \sin \theta
$$

- d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis
- Why?

Basic Hough transform algorithm

1. Initialize $\mathrm{H}[\mathrm{d}, \theta]=0$
2. for each edge point $I[x, y]$ in the image for $\theta=0$ to 180

$$
d=x \cos \theta+y \sin \theta
$$

$$
\mathrm{H}[\mathrm{~d}, \theta]+=1
$$

3. Find the value(s) of (d, θ) where $H[d, \theta]$ is maximum
4. The detected line in the image is given by $d=x \cos \theta+y \sin \theta$

What's the running time (measured in \# votes)?

Extensions

Extension 1: Use the image gradient

1. same
2. for each edge point $\mathrm{I}[x, y]$ in the image
compute unique (d, θ) based on image gradient at (x, y) $H[d, \theta]+=1$
3. same
4. same

What's the running time measured in votes?

Extensions

Extension 1: Use the image gradient

1. same
2. for each edge point $1[x, y]$ in the image
compute unique (d, θ) based on image gradient at (x, y) $H[d, \theta]+=1$
3. same
4. same

What's the running time measured in votes?

Extension 2

- give more votes for stronger edges

Extension 3

- change the sampling of (d, θ) to give more/less resolution

Extension 4

- The same procedure can be used with circles, squares, or any other shape

