Hough Transform

• Watt, 10.3-10.4

An edge is not a line...

How can we detect lines ?

Finding lines in an image

Option 1:

- · Search for the line at every possible position/orientation
- What is the cost of this operation?

Option 2:

• Use a voting scheme: Hough transform

- A: the solutions of $b = -x_0 m^2$ - this is a line in Hough space

Hough transform algorithm

Typically use a different parameterization

- $d = x\cos\theta + y\sin\theta$
- · d is the perpendicular distance from the line to the origin
- + θ is the angle this perpendicular makes with the x axis
- Why?

Basic Hough transform algorithm

- 1. Initialize H[d, θ]=0
- 2. for each edge point I[x,y] in the image
 - for θ = 0 to 180
 - $d = xcos\theta + ysin\theta$
 - H[d, θ] += 1
- 3. Find the value(s) of (d, $\theta)$ where H[d, $\theta]$ is maximum
- 4. The detected line in the image is given by $d = x\cos\theta + y\sin\theta$

What's the running time (measured in # votes)?

Hough line demo

Extensions

- Extension 1: Use the image gradient

 - same
 for each edge point I[x,y] in the image
 - compute unique (d, θ) based on image gradient at (x,y) H[d, θ] += 1
 - nitu,
 - same
 same
- What's the running time measured in votes?

Extensions

Extension 1: Use the image gradient

- 1. same
- 2. for each edge point I[x,y] in the image compute unique (d, $\theta)$ based on image gradient at (x,y)
 - H[d, θ] += 1
- 3. same

4. same

What's the running time measured in votes?

Extension 2

give more votes for stronger edges

Extension 3 $\ \ \,$ change the sampling of (d, $\theta)$ to give more/less resolution

Extension 4

The same procedure can be used with circles, squares, or any other shape

Hough circle demo