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“... experience proves that anyone who has studied geometry is infinitely
quicker to grasp difficult subjects than one who has not.”
Plato — The Republic, Book 7, 375 B.C.

23.1 Introduction

The idea for this Appendix arose from our perception of a frustrating
situation faced by vision researchers. For example, one is interested in
some aspect of the theory of perspective image formation such as the
epipolar line. The interested party goes to the library to check out a book
on projective geometry filled with hope that the necessary mathemati-
cal machinery will be directly at hand. These expectations are quickly
dashed. Upon opening the book, the expectant reader finds the presen-
tation dominated by endless observations about harmonic relations and
a few chapters which explore the minutiae of Pappus’ theorem. Finally,
as a last cruel twist of irony, the book ends in triumph with a rather ex-
hilarating discourse on the conic pencil. All of the material is presented
in the form of theorems defined on points, lines and conics without the
use of coordinates, except perhaps for a quick pause to define barycen-
tric coordinates just to taunt the reader. Dejected, the vision researcher
throws the book aside and contents himself with some calculations using
homogeneous coordinates and transformations which are covered briefly
in Duda and Hart [93] or perhaps from a book on graphics [113].

A major reason for this state of affairs is that projective geometry is
often formalized from the synthetic point of view. In the synthetic ap-
proach, points and lines are purely abstract predicates which are defined
and related by axioms and theorems. The realization of these structures
in everyday experience is of little importance to the mathematician. The
important issue from a mathematical point of view is to set up the ax-
iomatic structure of the projective plane and then explore the logical
implications of the structure. The synthetic approach is a legitimate
mathematical enterprise but leaves much to be desired for applications
in vision research. In addition, many projective geometry books adopt a
style of presentation which carries through a dense series of definitions,
lemmas and proofs. Ultimately, these theorems can be of great impor-
tance to vision applications but the classical presentation style provides
little or no guidance about the significance of each result.

Perhaps the most useful presentation for applications in vision is the
analytic approach. Analytic projective geometry is quite analogous to
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analytic Euclidean geometry which is widely taught and forms the main-
stay of first year calculus courses. The central concept of the analytic
approach is to introduce coordinates right at the beginning and then
define the geometric entities as equations on the coordinates. From the
analytic viewpoint, a particular geometric configuration corresponds to
a solution of the set of coordinate equations which define the entities
and their relations. Fortunately, there are a few accessible books which
pursue the analytic approach in projective geometry [270, 265]. These
books, if carefully read and digested, provide a rich source of ideas in
vision.

The main purpose of this Appendix is to compile many of the useful
analytic concepts from projective geometry and demonstrate their re-
lationship to vision problems. At the same time, it is hoped that the
presentation will provide a convenient reference for many of the concepts
used by the authors in the preceding chapters, particularly concerning
the development of invariants.

23.2 Projective geometry in vision

23.2.1 The past

Perhaps the most important question to address at the beginning is the
relevance of projective geometry in vision. Indeed, there may be some
suspicion that projective geometry is not very relevant at all since most
mathematics departments do not provide a course on projective geome-
try, even at the graduate level. The absence of adequate course offerings
is more likely due to the fact that most of the interesting mathemat-
ical problems of classical projective geometry were solved in the 19th
century, rather than a lack of practical relevance.

Projective geometry was used in vision almost right from the start.
For example in 1965, Roberts [250] in his Ph.D. thesis used the 3D
to 2D homogeneous projective transformation matrix to represent the
imaging of 3D polyhedral objects. He developed a linear algorithm for
determining the matrix parameters and was able to verify object models
by projection onto the image plane.

In vision papers over the years, the properties of perspective projec-
tion have been derived in many different ways. Most treatments start
by writing down the equations of central projection' and then continue
with some simplifications and new grouping of parameters which con-
stitute the main theoretical result. This approach has produced many

IThe most common formulation is, z = f%,y = %, where (X,Y, Z) is a 3D point
in world coordinates and (z,y) is the perspective image of the point. It is assumed
that the camera coordinate axes are aligned with the world axes. The camera focal
length is f. Note that the transformation is not linear since the image position is
proportional to inverse depth.
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important results but is not very powerful in attacking generic prob-
lems. An excellent example is the problem of determining the minimum
number of point correspondences needed to compute the transformation
between two perspective views of a 3D point set. The 3D locations of
the points are not known in advance. Recently, a proof that five points
are sufficient has been established by invoking the machinery of analytic
projective geometry. It is unlikely that the insights obtained about this
problem could have been achieved otherwise [107].

Perhaps the first attempt to encourage vision researchers to make use
of general results in projective geometry was the textbook by Duda and
Hart [93]%2. They devote several chapters to the concept of the cross-
ratio and its potential uses in the analysis of epipolar geometry. For
some reason, this material was not received with much interest. Perhaps
the application suggestions made by Duda and Hart were not powerful
enough or did not seem to attack the core problems in machine vision.
Also, orthographic projection was considered adequate for most of the
blocks world vision problems which were popular in the late 1960s, such
as Huffman—Clowes labeling [302].

Subsequent vision texts [29, 157] do not consider results from projec-
tive geometry except to establish the relationship between the geome-
try of perspective viewing and the homogeneous transformation matrix.
These equations are then exploited in applications such as stereo and
photogrammetry.

23.2.2 Why do we need projective geometry?

The geometry of objects is strongly distorted by perspective image pro-
jection. The perspective transformation of geometric shapes cannot be
accounted for by the usual mechanisms of Euclidean geometry. The main
value of a mathematical framework is that the model should account
for all the important phenomena with compact and easily manipulated
structures. Under perspective projection, parallel lines do not remain
parallel but instead meet at a point called the vanishing point. The con-
vergence of parallel lines under perspective is illustrated in Figure 23.1
where a number of vanishing points are indicated. The fact that par-
allel lines always meet at a vanishing point is the main property which
distinguishes projective geometry from Euclidean geometry. Indeed, the
only geometric properties preserved under projective transformations are
collinearity, tangency and incidence conditions, such as intersection and
concurrence. This paucity of invariant geometric properties is a major
contributor to the difficulty of object description and recognition under
perspective viewing. For example, the SCERPO [201] system assumes
affine projection in order to use parallelism as a perceptual grouping
relation. Also, affine geometry is often assumed in model-based vision

2A call taken up by Naeve and Eklundh [216].
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Figure 23.1
The concept of parallelism is not meaningful for perspective projection. Notice that
parallel lines converge to a vanishing point at the horizon.

systems [56, 159] because fewer features are required to compute model
pose uniquely under affine projection than perspective projection. How-
ever, the affine approximation to perspective fails when the depth range
of an object is significant compared to the viewing distance.

The most important aspect of projective geometry is the introduction
of homogeneous coordinates which represent a projective transformation
as a matrix multiplication. This compact form allows many of the sig-
nificant aspects of projective transformations and projective geometry
to be demonstrated using simple matrix algebra computations. In Eu-
clidean coordinates, many of these derivations become difficult, if not
impossible.

We now illustrate the relevance of projective geometry by reviewing
a few major vision problems which have been solved using results from
projective geometry.

23.2.3 Contributions of projective geometry to vision

The projective transformation matrix — In his Ph.D. thesis, L.
Roberts [250] developed a complete system for the recognition of poly-
hedral models in grey level images. One of the problems he solved was
to derive a linear method for determining the projective transformation
matrix for a camera, given a set of 3D points and their image locations.
The solution found by Roberts® is quite attractive since it involves only
matrix algebra and requires a minimum of six reference points. The
method does not require an iterative solution and any number of points
can be used in a least mean square sense to improve the accuracy of the
camera, parameters.

3see Section 23.10 for further discussion.
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Plane orientation from vanishing points — A number of results
have been achieved in computing the orientation of planes from vanishing
points of parallel line sets in the plane [78]. Perhaps the most extensive
investigation of the use of vanishing points in the implementation of a full
system is by Torre and Coelho [77]. They restricted their experiments to
an environment containing objects with parallel or perpendicular sides
called Legoland. These assumptions allow recovery of the 3D geometry
of a scene from vanishing points constructed in a single image of the
scene.

The focus of expansion — When a camera is undergoing pure trans-
lational motion, it is well known that the trajectories of image points
appear to move towards or away from a fixed point known as the Focus of
Expansion (FOE). Projective geometry gives an immediate insight into
this situation: relative to the camera all space points are moving along
parallel straight lines. Clearly, the projections of these lines converge to
a common vanishing point — the FOE [169].

Camera motion from n matched points — Once the transforma-
tion due to camera motion is known, the 3D position of the points can be
recovered up to an unknown scale factor. This problem, which is impor-
tant for many visual tasks, has been in the literature since Chasles [72]
in 1855. The main focus has been on finding the minimum number of
correspondences to solve for the motion (the minimum is five) and how
many solutions are produced for a particular number of point correspon-
dences. A few examples of recent investigations are:

1. Longuet-Higgins [198, 199] showed that for n = 8, a solution can be
recovered using linear techniques?;

2. Maybank [204] showed that there are multiple solutions (for any
n) if points and optical centers lie on a certain critical surface (a ruled
quadric);

3. Faugeras and Maybank [107] proved that for n = 5 there are at most
10 solutions.

To determine these results the authors made elegant and very sophis-
ticated use of projective geometry. However, as has been pointed out
by Buchanan [60], some of these modern developments are a rediscovery
of results known to projective geometers and photogrammetrists of the
19th century [111, 147, 186, 277]. The main reason that these earlier
results were rediscovered is best summed up by a quote by Kanatani,
“the works are inaccessible and illegible to modern readers.” Again, the
inaccessibility of the 19th century results underscores the need for the
migration of this literature into modern notation.

4See Section 23.11 for more detail on the analysis of two corresponding projective
views.
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Figure 23.2
A one-dimensional construction of perspective viewing which illustrates the formation
of a vanishing point.

Projective invariants — Perhaps the most significant contribution
of projective geometry is the formulation of invariants under projective
transformations. A wide variety of such invariants are available for sets
of points and lines as well as higher order algebraic curves. The develop-
ment and application of such invariants to computer vision is the focus
of this book.

23.3 Geometry under perspective viewing

The initial understanding of the effects of perspective was developed
in the context of artistic drawing. From the 15th century onwards,
the problem of understanding and precisely constructing the effects of
perspective viewing has been considered a key aspect of artistic drawing.
The goal is to create a realistic impression of depth on a two-dimensional
surface where the central phenomena which must be accounted for is the
convergence of parallel lines at a vanishing point. A brief treatment of
perspective construction will prove useful in establishing the effect of
perspective on geometric properties.

A simple construction to illustrate the idea of the vanishing point
is shown in Figure 23.2. The figure shows an image plane which is
perpendicular to a ground plane and both planes are seen edge on. Under
perspective viewing, an image point is constructed by the intersection of
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Figure 23.3
A two-dimensional construction of perspective viewing which illustrates the formation
of a vanishing point.

a line from the eyepoint to the world point with the image plane. In this
example all of the world points lie on the ground plane. Now consider a
series of world points which are at increasing distances from the image
plane such as A,B,C, ... V. The images of points far from O on the
ground plane approach v and for point V, which is at infinity, the image
is at the vanishing point, v. Note that the ray from the eyepoint through
the vanishing point is parallel to the ground plane. It is also obvious
from the figure that points equally spaced on the ground plane are not
equally spaced in the image. This demonstrates that neither distance
nor ratio of distances are preserved under perspective viewing.

In Figure 23.3 the convergence of parallel lines is illustrated. Here we
see an oblique view of the ground plane and image plane and two parallel
lines lie on the ground plane. As points on the two lines recede to infinity
their corresponding image points converge to the same vanishing point.
The vanishing point, v, is the point at which the ray, OV, parallel to the
two lines and passing through the eyepoint, intersects the image plane.

23.3.1 Perspective drawing

The fundamental property of perspective is that all image points are
collinear with the eyepoint and their corresponding world point. As
we have just seen, a vanishing point in the image plane defines a set
of parallel lines in 3D world coordinates which are parallel to the ray
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Figure 23.4
A perspective view of a set of parallel lines in the plane. All of the lines converge to
a single vanishing point.

from the eyepoint, passing through the vanishing point. Conversely,
the images of a set of lines parallel in space form a set of concurrent
lines® which intersect at the vanishing point. This relationship between
vanishing points and 3D line orientation provides the foundation for
constructing realistic perspective views of the three-dimensional world.

First consider the case of one vanishing point and a set of coplanar
parallel lines. A general perspective view of this configuration is shown
in Figure 23.4. The drawing can be interpreted as a set of parallel
lines, but the effect is not very convincing. Now consider two sets of
parallel lines as on a tiled floor. The edges of the tiles will converge
to two different vanishing points and the sketch shown in Figure 23.5
now begins to have a stronger impression of depth. The two vanishing
points define a line in the image plane called the horizon line. Any set
of parallel lines in the plane define a vanishing point which lies on the
horizon line. The shape of general curved boundaries under perspective
can be constructed by approximating the shape with a polygon. Each
edge direction in the polygon has a corresponding vanishing point on
the horizon line. All edges with a given direction must intersect at the
same vanishing point. For example, the sides of a rectangle have two
vanishing points and each edge must be inclined in the image so that

5Lines which all intersect at a common point. This configuration of lines is called a
pencil.
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Figure 23.5

Different directions define different vanishing points. Here a tile floor is shown in
perspective. The two edge directions of the tiles define two vanishing points on the
horizon. The projected area of each tile is not equal in the image nor is the ratio
between tile areas. For example the ratio of areas for B:A is about three times that
of C:A.

parallel edges meet at the vanishing point when extended.

It has already been demonstrated that the ratio of distances on a line
is not preserved under perspective. The tiled floor example demonstrates
that ratio of areas of two figures is also not preserved. All tiles in the
figure have the same area, but the ratio of the area between any two
tiles in the perspective image can take on any value, depending on the
choice of tiles. For example, the ratio of areas of the images of tiles A
and B is about three times that of the area ratio of tile images C and
A. This area ratio can increase without limit for tiles approaching the
horizon.

An important case for vision applications is the circle. It is a common
but incorrect notion that the center of a circle is preserved under a per-
spective transformation. The perspective view of a circle is constructed
as shown in Figure 23.6. The figure shows a plan view of the circle and
the construction lines required to construct a perspective view of the
circle from the plan view. The constructions are based on the specifica-
tion of vanishing points for the edges of a square circumscribed about
the circle and the fact that line intersections are preserved by perspec-
tive. The construction clearly shows that the center of the perspective
view of the circle, an ellipse, lies arbitrarily far from the projection of
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Center of Projected
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Figure 23.6
Perspective construction of a circle. Note that the centroid of the projection of the
circle does not correspond to the image of the center of the circle.

the original center of the circle. The center of the circle always corre-
sponds to the intersection of the diagonals of the circumscribed square.
The ellipse must pass through the points of tangency of the edges of the
circumscribed square and also (in this example) the major axis of the
ellipse must correspond to the line joining the points of tangency of the
square with the circle.

The perspective construction can be extended to the third dimension
by adding more vanishing points. For the case of a cube there are three
world plane orientations and from a general viewpoint, three vanishing
points are required for the edges of the cube. In Figure 23.7, the struc-
tures define many vanishing points in the image. The vanishing points
for three major orientations are indicated.

The concept of symmetry is also not meaningful under perspective.
Consider the perspective drawing of the hourglass shape in Figure 23.8.
The original shape has two axes of symmetry but under perspective
viewing the image shape is not symmetrical®.

8Symmetry is also lost under orthographic projection, but the concept of skewed
symmetry can be defined which enables the recovery of symmetrical figures and
constrains the pose of the figure planes [166].
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Figure 23.7
A perspective drawing with major vanishing points indicated.
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Figure 23.8
Symmetry is lost under perspective projection. The dashed line indicates a reflection
of the perspectively transformed shape about the line c.
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Figure 23.9

The perspective viewing of shadows requires the composition of two perspective pro-
jections, one from the light source to the ground plane, followed by a projection
through the eyepoint to the image plane.

23.3.2 Pictures of pictures

So far we have considered the problem of constructing perspective views
of two and three-dimensional geometric shapes. It is interesting to con-
sider what happens if the scene to be projected itself contains a per-
spective image, such as the case of a room scene with a picture on the
wall. Another important example of a chain of perspective views occurs
in outdoor scenes where shadows are projected by a point light source.
A simple shadow scene is illustrated in Figure 23.9 which shows the pro-
jection of the shadow of a shape onto the ground plane. The shape of
the shadow is determined by the same collinear construction methods as
in the construction of any perspective view. Any point on the boundary
of the shadow is collinear with the corresponding point on the object
boundary and the light source. A second perspective projection of the
shadow is required to produce the image of the scene containing the
shadow.

In general, there is no perspective geometry which will project the
original shape, S, onto the image of its shadow, o. That is, it is im-
possible to find any configuration of the center of projection and the
image plane which will map S — ¢. The impossibility of representing
any sequence of perspective projections by a single perspective view is
easily demonstrated by perspective projection onto lines from points in



Appendix — Projective Geometry for Machine Vision 475
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Figure 23.10

An example of the fact that a sequence of two or more perspective projections are not
representable by a single perspective view. The figure shows that lines from A, B,
and C through the corresponding image points on ¢ intersect in distinct points, such
as p and q.

the plane. Figure 23.10 illustrates two 1D perspective projections. s is
a projection of S and o is a projection of s. Clearly, there is no com-
mon center of projection which is the intersection of all lines joining the
corresponding points of o and S.

The implication of this observation is that a more general mapping
is required than perspective in order to explain all the geometric effects
that can occur in perspective viewing. This more general mapping is
called the projective transformation. Three key points about the projec-
tive transformation are as follows:

1. Any perspective projection can be represented by a projective trans-
formation.

2.  Any composite chain of perspective projections is not necessarily a
perspective projection but is always a projective transformation.

3. Any projective transformation can be decomposed into two perspec-
tive transformations.

Consequently, it becomes necessary to develop a mathematical frame-
work which characterizes the properties of the projective transformation.
In the following we will review the theory of projective geometry which
can account for the effects of perspective and projective image forma-
tion. In vision applications, we are most interested in the mapping from
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3D space onto a 2D image plane. Unfortunately, most results in projec-
tive geometry have been developed for the projective plane which only
provides the properties of the projection of a plane in space onto the
image plane. However, in Section 23.10 we will use the results of projec-
tive geometry to model the perspective camera and provide a basis for
the analysis required by vision applications.

23.4 The projective plane

23.4.1 The properties of the projective plane

The projective plane is a mathematical concept intended to model the
geometric properties of a sequence of one or more perspective projec-
tions. In the projective plane model, transformations are represented
by mappings of the plane onto itself. Thus a transformation can be
viewed as a rearrangement of the points of the projective plane called a
collineation. The behavior of geometric structures, such as lines, under
collineations is the main focus of the theory of the projective plane.

The effect of a collineation on geometric properties differs from Eu-
clidean transformations in two major aspects:

1. Distance - On the Euclidean plane the distance
V(z = 0)? + (y — y0)?

between two points, P and Pg is not affected by Euclidean transfor-
mations, i.e. translation and rotation. Under perspective, the distance
between two points can be transformed to any value.

2. Parallel Lines - The image of parallel lines can be two intersecting
lines when viewed under perspective.

The projective plane can be defined as a generalization of the Eu-
clidean plane where some properties are removed. This generalization
proceeds in two steps. First, the notion of distance is discarded, forming
a structure called the affine plane. The main property which charac-
terizes the affine plane is that parallelism is an invariant of affine trans-
formations. Under affine transformations, the coordinates of points un-
dergo anisotropic scaling, e.g., a square is transformed into an arbitrary
parallelogram. The affine plane is often used in vision applications as a
reasonable approximation to perspective image formation”.

Second, the model removes the concept of parallel lines. All line pairs
intersect in some unique point under perspective viewing. In order to
account for the case where two lines are actually parallel, i.e. meet at
infinity, the notion of an ideal point is introduced. As we shall see,

"The affine approximation is discussed in more detail in Section 23.10.
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each parallel line orientation defines a different ideal point. The set of
all these ideal points is a line added to the affine plane. For example,
the horizon line in an image represents a line at infinity which has been
projected into a line of finite points by the perspective transformation. In
the projective plane model, ideal points are not distinguished from other
points which leads to considerable simplification in analyzing perspective
effects.

An affine plane with a line of ideal points adjoined and thereafter not
distinguished is called the projective plane. The incidence axioms for the
projective plane are as follows:

Al  Two distinct points determine a unique line.

A2 Two distinct lines determine a unique point.

Note that axiom A2 would not hold in the affine plane since parallel
lines do not meet. The most important aspect of these axioms is that
they are identical except for the words point and line. In fact, we could
exchange the words and exchange Al and A2. Thus, in the projective
plane, lines and points are said to be dual. Any theorem (property)
applying to lines also applies to points, and vice versa. In a statement
involving both points and lines, the two words can be exchanged without
affecting the truth of the statement. We will find this concept of duality
very important in the application of projective geometry. Once a result
has been worked out for points, a similar result for lines is obtained for
free.

23.4.2 Models for the projective plane

As we have seen, the familiar Euclidean plane cannot be used to model
the properties of projective transformations. New models are needed
to provide intuition about the behavior of geometric relationships under
projection. Perhaps the most useful model is provided by a set of rays in
a three-dimensional space, R3. Asshown in Figure 23.11 all rays emanate
from a common origin. Each ray represents a projective point. Only the
direction of a ray is important in the model. Suppose an arbitrary plane,
7, not passing through the origin, is constructed in R3. The rays which
intersect the plane correspond to points in the affine plane. Rays which
are parallel to the plane model ideal points. The set of all rays parallel
to 7 and passing through the origin is a one parameter family and is
mathematically equivalent to a line, the ideal line. Since the plane is
arbitrary, any point along a ray is equivalent to any other point. Also,
there is no real distinction among the rays as to affine or ideal points,
since 7 is arbitrary.

The plane through the origin defined by any two distinct rays is a
model for the projective line. To see this, consider each of the two
incidence axioms, Al and A2. First, two rays always define a unique
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Ideal Rays

ideal

Figure 23.11
A model for the projective plane can be constructed by rays in 3D space. The rays
correspond to points in the projective plane. Two rays through the origin define
a unique plane though the origin. Any plane through the origin corresponds to a
projective line.

plane through the origin, which satisfies A1. Second, a unique ray always
exists which is the intersection of two such planes, thus providing a model
for axiom A2. The affine plane, 7, intersects the plane defined by two
rays, Mine, in an affine line. If two lines are parallel in the affine plane,
they meet on one of the rays which is parallel to 7. The set of all rays
parallel to 7 form a plane, T;geqi- Again, this plane is just a model for
a projective line and is not distinguished from other planes.

The ray model also illustrates the behavior of a perspective mapping
between planes. In this case, two planes are introduced, II and 7. The
origin of ray space can be considered to be a center of projection and
a ray intersects both planes in the corresponding perspectively trans-
formed points. The same relationship can be achieved by considering
7w and II to be a single plane which is transformed from one plane to
the other by transforming the coordinate system of ray space. The ray
intersections with 7 and IT are a model for the projective transformation
of points. From this model for a perspective transformation, it is easy
to see that ideal points can be mapped into finite points and vice versa.

It is possible to model the arbitrary relationship between 7 and IT by
rotating and scaling the rays in R3. All positions and orientations of 7
with respect to the rays can be achieved by a rotation and scaling of
R3. The position along a ray of its intersections with 7 is not important
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so the transformation of R® can involve both rotation and anisotropic
scaling in general. Rotation and scaling of R? is represented by a general
3 x 3 matrix multiplication, as discussed below. It follows that any com-
position of perspective projections also corresponds to some combined
rotation and scaling of ray space.

This ray model represents all of the geometric properties of the projec-
tive plane by interpreting rays as points and planes through the origin
as lines. An analytical theory can be established by introducing the
coordinates of the three-dimensional ray space.

23.4.3 Homogeneous coordinates

This analytic geometry of the projective plane is a direct consequence of
the algebraic properties of the coordinates of the three-dimensional ray
space. According to the model just developed, a point in the projective
plane is represented by three Cartesian coordinates®, p = (z1, 72, 73)%,
which represents a ray through the origin in three-dimensional space.
(x1,x2,73)! are called homogeneous coordinates because algebraic ex-
pressions representing forms, such as conics, become homogeneous
equations’ when expressed as polynomials in (x1,x2,23)!. Only the
direction of the ray is important, so all points of the form Ap =
(Az1, A\x2, Aw3)t are equivalent. Conversely, all projective properties of
a point must hold regardless of the value of A. Clearly, the direction
of a ray of zero length is not defined. The corresponding homogeneous
coordinates (0,0,0) has no meaning, and is undefined in the projective
plane.

A relationship to conventional Cartesian coordinates in the plane,
(z,y), can be established by constructing a special plane, m., which
is perpendicular to the x3-axis and at unit distance along x3. The in-
tersection of the ray p is the point, p. = (x,y, 1), where the pair (z,y)
corresponds to the standard Cartesian coordinates of p. As we discussed
above, a ray parallel to 7, is called an ideal point. Any ideal point there-
fore has 3 = 0. The condition 23 = 0 defines a line called the ideal
line.

It is not necessary to specify a unit distance along 3 for the location
of m,. Instead the Cartesian coordinates corresponding to a projective
point are defined by,

T1 T2 ¢ t
e = _a_a]- = ) 7]-
Pe = (0, ) = (z,y,1)

so that the position of the plane does not affect the value of the Cartesian

8In the following development, coordinate vectors are considered to be column
vectors.

9Recall that a homogeneous polynomial equation has all monomial terms of equal
total degree. As a consequence, if ¢ is a polynomial in the coordinates, then
qg(Az1,Az2,Ax3) = A*q(z1,22,23), where k is the degree of each monomial.



480 J. L. Mundy and A. Zisserman

coordinates. It is not essential that the plane be perpendicular to z3
but this is the standard convention so that ideal points are denoted by
T3 = 0.

23.4.4 The projective line

The coordinate representation of a line in the projective plane is derived
from the analytic representation of a general plane through the origin of
ray space. The equation of this plane is given by,

ULT1 + 2o + uzxz =0 (231)

the plane coefficients u = (uy,u2,u3)! correspond to the homogeneous
coordinates for the projective line. Again, Au is the same line as u. Note
that the equation is homogeneous, since the degree of each term is the
same. The case of uz = 0 corresponds to a line through the origin. The
ideal line is u = (0,0, 1)! which has the equation, z3 = 0. The projective
equation of a line can be represented in various vector and vector array
notations.

u-p=u'p=plu=0.

The duality of points and lines is indicated by the symmetric form of
these equations. That is, the role of u and p can be interchanged without
affecting the form of the equation. The homogeneous projective form
of the line can be related to the standard Cartesian line equation. In
Cartesian coordinates, the equation of a line is:

Ngx +nyy —d=20

where n = (ny,n,)* is the normal to the line and d is the distance from
the origin to the line in the direction perpendicular to the line. We
can compare this expression to the homogeneous line equation (23.1)
and determine the relationship between Cartesian line parameters and
homogeneous line coefficients. The line normal components are,

Uy U2
Ng = du3 Ny = du3 (23.2)
showing that the normal to the Cartesian line is just the projection onto
the zy plane of the normal, (uy,us,u3), of the corresponding plane in
ray space.

The concept of the vanishing point discussed earlier can be related
to homogeneous coordinates as follows. Any vanishing point, p?, cor-
responds to an ideal point with 23 = 0. So p? must be of the form,
p’ = (p¥,p5,0). The equation of a line incident with the vanishing
point is given by,

u1p] + uzpy = 0.
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So, for all such lines

Uy Pa

Uz Py
and from equation (23.2) above,

Ne _ P}

Ny Py
so (pY, py) must correspond to the direction of the line, i.e.

(nz,ny) - (P1,P3) = Nazpi + nyp3 = 0.

It follows that any line (in the plane) incident with this vanishing point
will have the same direction, since the ratio n, /n, is fixed. When this set
of parallel lines is projectively mapped, the lines are no longer necessarily
parallel. However they will still all be incident with the projection of p”.
This condition shows that the concept of parallelism is not meaningful
in projective geometry since there is nothing to identify p” as an ideal
point. In order to define the concept of parallelism, it is necessary to
distinguish a set of ideal points from the other points on the projective
plane. Lines are parallel if they intersect at an ideal point. Augmenting
the projective plane with the additional structure of a line of ideal points
results in an affine plane.

It is necessary to specify a line of ideal points in the plane before
parallelism can be defined.

23.4.5 Projective transformations

As we discussed above, a projective transformation between two pro-
jective planes can be represented by a general linear transformation of
ray space, (z1,T2,73) = T(X1, X2, X3)!. It can be shown that all prop-
erties of a general projective transformation are accounted for by this
matrix transformation. Conversely, any (non-singular) linear transfor-
mation of homogeneous coordinates defines a projective transformation
of the projective plane. This form for the projective transformation is
a key benefit of introducing homogeneous coordinates, since many im-
portant results can be obtained directly by manipulating simple matrix
and vector expressions.

Since the projective plane has three homogeneous coordinates the
transformation is represented by a 3 x 3 matrix with 8 essential pa-
rameters. The overall scale of the matrix is not important since all
projective points are equivalent up to the multiplier, A. The set of dis-
tinct projective transformations is an eight-dimensional subspace of the
nine-dimensional space defined by the matrix elements.
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The general projective transformation from one projective plane, II,
to another, 7, is represented as'®

1 t11 ti2 t13 X1
To | = | tor oo o3 X
Z3 t31 t32 a3 X3
or
x =TX.

If the transformation is represented in Cartesian coordinates the non-
linear nature of the projective transformation in Euclidean or affine space
is apparent.

z1 _ tuX +t2Y + i3
T3 B t31X + t32Y + 133
T2 _ 11X +822Y + 13
T3 N t31X + t32Y + 133 )

Tr =

(23.3)

Again, the overall scale factor of T does not affect the Cartesian coordi-
nates since the same factor appears in the numerator and denominator
of each expression. This linear rational form represents the effect on
Cartesian coordinates of a projective transformation and accounts for
a sequence of central projections between two planes in space. Conse-
quently, it is of major importance in vision applications.

23.4.6 Projective transformation of lines

Since points and lines are dual in the projective plane, the transforma-
tion of line coordinates is also a linear transformation. Consider the
equation for a point incident with a line defined earlier,
U0 X1+ U X5 +UzX3 =

U'P =
If a point, P, transforms as, p = TP, then P = T~ !p. Substituting this
inverse transformation into the line equation yields
Uit 'p=0.

It is seen that the collinearity of points is preserved under a projective
transformation since the general form of the dot product is not affected
by the linear homogeneous transformation. Further, the transformed
line equation is ulp, and the transformed line coordinates, u, must be

u = [T7')U

10Tn the following, capital letters are used to indicate the source objects, and corre-
sponding small letters are used to represent the destination transformed objects.
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which is often represented more compactly as
u = T'U.

Thus, lines in the projective plane transform linearly, just as points, but
the corresponding transformation matrix is the transpose of the inverse
of the matrix defining the point transformation.

This mapping of points into points and lines into lines is called a
collineation. The term collineation implies that any projective transfor-
mation of the plane preserves the collinearity of a set of points. Since
the form of the transformation for points and lines is the same, it is
natural to also consider the possibility of a transformation of the pro-
jective plane which takes points into lines and lines into points. Such a
transformation is called a correlation. We will find the concept of the
correlation useful in interpreting the projective properties of algebraic
curves. For example, a conic defines a correlation between poles and
corresponding polar lines!®.

23.4.7 Four points define a projective transformation

The projective transformation matrix, T, requires eight independent pa-
rameters to define a unique mapping. Since each point in the plane
provides two Cartesian coordinate equations, it is necessary to find four
point correspondences between two projectively transformed planes to
define the transformation matrix uniquely. The overall scale of T is ar-
bitrary, so we can choose t33 = 1. Let the four corresponding points
be represented by, (\;iz;, A\iys, Ai)! = T(X;,Y;, 1)t. The resulting linear
system of equations is,

rX: v 1 0 0 0 —z: X1 —xY1 7 [ tun ] [z ]
0 0 0 Xi1 i 1 —yiXi —yi11 t12 Y1
X, Y5 1 0 0 0 —x2Xo —x2Y2 ti3 T2
000 0 X Y 1 —pXo —pYo ||t | _| 2 | (534
Xs Ys 1 0 0 0 —x3X3 —x3Y3 123 T3
0 0 0 Xs Y5 1 —ysXs —ys3Ys tos Y3
Xs Y2 1 0 0 0 —x24X4 —z4Ys t31 T4
L 0 0 0 Xu Yi 1 —yaXyu —yaYs | L ts2 | L ya

The existence of this linear system ensures, in principle, the uniqueness
of T, given four point correspondences, provided that no three of the
points are collinear!2.

This result leads immediately to a canonical projective coordinate sys-

tem, based on four points, where the properties of geometric figures can

11See Section 23.7.1.

12When more than four points are available, singular value decomposition methods
can be used to produce least squares solution. Also, by using a singular value de-
composition approach, it is not necessary to single out a particular element of T, e.g.
t33.
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Figure 23.12

The standard projective coordinate frame defined by four points, and called the
triangle of reference. Homogeneous coordinates are defined as the perpendicular
distance from a point to the edges of the triangle. The distance scale is set by the
unit point.

be invariantly represented. An obvious choice is to select the canoni-
cal frame to be a unit square where the transformed points of reference
have coordinates, {(0,0,1)%,(1,0,1)?,(0,1,1)t (1,1,1)!}. Any reference
quadrilateral can be projectively transformed onto this unit square and
then the geometric relationships of other points and lines can be invari-
antly represented in the canonical frame. This approach is taken in the
representation of planar curved shapes to provide an invariant signature
of the curve for recognition!3.

Another canonical coordinate frame is introduced in classical projec-
tive geometry which simplifies the analysis of some geometric configura-
tions and in particular is useful in the analysis of the projective proper-
ties of conics. The coordinate system, based on a triangle of reference, is
shown in Figure 23.12. Three of the points are used to define a triangle
of reference. Standard coordinates are assigned to the points as shown.
The fourth point is assigned coordinates, puniz = (1,1,1)! and is called
the unit point. Once four points have been specified, the homogeneous
coordinates of the Cartesian point representation, p = (z, y)! are defined

by,
z; = Muinx + uiy + us) (23.5)

13See Chapter 11.
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Figure 23.13

The cross-ratio for all lines cutting the pencil on the left is the same. This config-
uration corresponds to perspective projection onto a line. The figure to the right
illustrates a general projective transformation on the line.

where u; are the line coordinates of the edges of the triangle of reference.
Equation 23.5 represents the line equation for a point lying on one of
the sides of the triangle. The value of this expression is zero if the point
(z,y,1)! lies on the line. Otherwise the value is proportional to the
perpendicular distance from the point to the line. The value of each
homogeneous coordinate z; is the Euclidean distance of the given point
from the corresponding edge of the triangle of reference. For example
z1 is the distance to the line, Py P», i.e. 1 = 0. The arbitrary distance
scale factor A is determined by letting p = pynit-

23.5 The cross-ratio

23.5.1 The definition of the cross-ratio

Perhaps the most important result for the theme of this book is the fact
that the cross-ratio of four points on a line is preserved under projective
transformations. There are many results in projective geometry which
result in an interpretation in terms of the cross-ratio. It seems likely
that all invariant properties of a geometric configuration can ultimately
be interpreted in terms of some number of cross-ratio constructions.
The cross-ratio is defined with respect to Figure 23.13. As we dis-
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cussed earlier in Section 23.3, the ratio of distances is not preserved
under a projective transformation, however, the ratio of ratios of dis-
tances is invariant. The cross-ratio is defined by

(X° - X1(X* - X?)
X -X)X - X")

CT(PI;P27P37P4) = (236)
where {X1, X2, X3, X*} represent the corresponding positions of each

point along the line, e.g. (X3 — X!) is the distance between points P3
and Pl.

23.5.2 The invariance of the cross-ratio

In order to show the invariance of the cross-ratio it is first necessary
to show the effect of projective transformations on the coordinates of
points on a line. Any point on a line can be represented in terms of only
two homogeneous coordinates'. and points on this line are represented
by P = (X1, X»)!, where X, X are homogeneous line coordinates. The
cartesian position of a point on the line is given by X = X;/X5. Simi-
larly, the model for a projective line is provided by a set of rays through
the origin of a plane, R%. Cartesian points are the intersection of the
rays with an arbitrary line 1 in this 2D space. Again, the projective
mapping between lines is represented by linear transformations of ray
space.

The projective mapping between lines reduces to a 2 x 2 homogeneous
transformation matrix, T so that x = TX where (z1,z2) are the homo-
geneous coordinates on the transformed line. In this case, there are three
essential parameters needed to define T since again the overall scale of T
is not important. The cartesian position of a point on the line is given
by & = z1/zs. Tt follows that projective transformations on the line are
of the form,

o= 111X + 12
to1 X + 122

which is the 2D homogeneous form of equation (23.3). Now consider the
determinant of the 2 x 2 matrix which is formed from two points on a
line, Pl, P2,

D(12) = |P1Py|
which expands to,

Xy X?‘

141n general the number of homogeneous coordinates is dim(S) + 1, where dim(S) is
the dimension of the geometric space.
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Carrying out the determinant,

D(12) = X{XZ- XX,
Xt X}
= X21X22(X_:1_X_;2)
= XIX2(X'-X?). (23.7)

The constant of proportionality is just the arbitrary projective scale
factor for each point. We can make the idea of the scale factor more
explicit,

P1 = Al(Xl, 1)t

Py = Ay(X2, 1)

Here, A1, As are the point scale factors. The result of equation (23.7) be-

comes, D(12) = A;Ay(X*' — X?2). D(12) is transformed under projection
to d(12) = |T [P1P2]|, SO

d(12) = Mdo(z' —2%) = AjA(Xt — X2)|T]

where A1, Ao are just the arbitrary scale factors on the transformed line.
Next, consider the ratio of determinants of point pairs,
R= D(31)  |PsPy| A (X3 —X1)

- D(32)  |P3Py|  Ax(X3-—X2)’

The transformed ratio, r, is given by

r = |Psp1]l _ At (22 — 2t _ A (X3 — XY
|[p3p2]| Ao (23 — x2) Ay(X3 — X2)°

The determinant of the transformation matrix is eliminated from the
ratio. However, in order to eliminate the effect of the projective scale
factors it is necessary to take the ratio of determinants from four point
pairs. It is seen that any combination of ratios which has a point ap-
pearing the same number of times in the numerator as the denominator
will eliminate |T| and the scale factors A\; and A;. For example, we can
define,

_ D(31)D(42)
Cr(P1, P2, Py, Pa) = 5o ban)

and it easily follows that Cr(p1,p2, P3,P4) = Cr(P1,P3, P3, Py) since
both |T| and the projective scale factors, A; and A;, cancel.

23.5.3 Order on the projective line

The development of the invariance of the cross-ratio suggests that other
permutations of the points in the definition of the ratio will also lead to
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a scalar invariant. The four points can be permuted 4!( or 24) different
ways. There are only six distinct values of the cross-ratio within the
24 permutations. If the cross-ratio for the standard definition of equa-
tion (23.6) is defined as 7 then the six distinct values are related by the
set,

1 1 -1 71
Z1_
{7',7_, fA = e |

}.

The existence of these six different values is somewhat annoying in using
the cross-ratio as an index for recognition since the order of points along
a line can be permuted by a projective transformation. The possibility
of permutation prevents a direct correspondence between points across
views and therefore all six values of the cross-ratio must be considered as
an index!5. It is reasonable to expect the order of points to be reversed,
as when we look at an object boundary from behind. In this case the
value of the cross ratio is unchanged. Also, since a point at infinity can
be transformed to a finite vanishing point, the point order is cyclically
permuted as one of the points recedes to infinity and emerges on the
other end of the line as in the permutation {1,2,3,4} — {2,3,4,1}.

23.5.4 The cross-ratio of lines

Since points and lines are dual, there exists an equivalent cross-ratio for
lines. The dual relation to collinearity is incidence at a point. A cross-
ratio is defined on four lines which are incident at a single point. Any
set of lines incident at a common point is called a pencil. Since the lines
all share a single point the set can be described by a single parameter
which defines the orientation of the lines. Note the dual notion of points
along a line where a single parameter defines the point position on the
line.

The derivation proceeds as before if we take the common point of
intersection to lie at the origin. Then the line coordinates are of the
form U = (U, Us, 0) and the ratio u = —g—; corresponds to the gradient
of a line. This parameter u sweeps out the lines of the pencil.

The cross-ratio of the pencil can be defined in terms of the angles
between the lines as shown in Figure 23.14. and is given by
sin 13 sin a4

CT(U].J UZ; U3; U4) =

sin apg sin agg

157t is shown in Chapter 5 that a rational function of the cross-ratio value can be
defined which is independent of the effects of permutation. This is the j-invariant
defined by

(2 -1+ 1)3

A

So for example, j(7) = j(1 — 7).
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Figure 23.14

The dual configuration for the cross-ratio. The pencil of lines has a cross-ratio defined
by the angle between lines. By Pappus’ theorem, any line intersecting the pencil has
the same cross-ratio for the points of intersection of the line with the pencil.

Now for any line which cuts the pencil, the four points of intersection
of the line and the pencil define a cross-ratio on the line. Pappus’
theorem states that if the points of intersection are {P1,Ps, P35, P4},
then Cr(P1,P2,P3,P,) = Cr(Uy, Uz, Us, Uy). For a proof of this see
Springer [270].

23.5.5 The cross-ratio and projective coordinates

An important use of the cross-ratio in computer vision is the idea of
transfer. Tt is generally the case that invariants can be used to establish
the position of transformed points once the location of a few reference
features are available in the target coordinate frame. The cross-ratio on
the line provides a simple example of transfer.

Suppose we have three point correspondences between two projec-
tive transformations of a line. The position of any fourth point can
be derived, given the cross-ratio of the point with respect to the first
three points. Given the four points, {P1,P3,P3,X}, the cross-ratio,
Cr(P1,P2,P3,X) = Cr(p1,P2,P3,X) = 7 is an invariant. With the
correspondences {p;, P;} i € {1,..,3}, the location of any fourth point
on the line, x, may be determined from the cross-ratio as

2?(2® — 2t) — 12l (2® — 2?)

T = @~ (@ =) (23.8)
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This result is obtained by solving the equation'®, Cr(p1,p2,p3,X) = T
for z. Note that the position of z in the transformed frame is computed
without determining the elements of the transform matrix. Equivalently,
the positions of the reference points could be used to compute the three
essential parameters of the transformation matrix. We will extend this
concept to multiple views of 3D point sets in Section 23.11.

23.6 Conics

23.6.1 The conic is defined by the cross-ratio

The properties of conics in the projective plane have proved very useful
in vision applications. Perhaps the most dramatic example of the pro-
jective nature of the conic is that it is a curve which can be constructed
from the cross-ratio. This construction for the conic is analogous to the
circle in Euclidean geometry where the circle is a locus of points with
constant Euclidean distance from a given point and distance is an in-
variant under Euclidean transformations. The construction is a result
of Chasles’ theorem,

Given four points in the plane, no three collinear. Construct a pencil
of lines from another point in the plane and the four given points. The
locus of such points that form a pencil with a fized cross-ratio is a conic
curve.

The conic is a curve defined directly in terms of a projective invariant
property and therefore it is not surprising that it plays a central role in
projective geometry.

23.6.2 The quadratic form of the conic

Most of the analytic results for the conic are derived from the quadratic
homogeneous expression defining a conic curve in the plane,

AX> + BX1Xo + CXo? + DX 1 X3 + EX2 X5+ FX5% =0

Given that a point in the projective plane is represented in homoge-
neous coordinates, X = (X1, Xy, X3)?, the quadratic conic form can be
represented as a matrix expression,

XicX =0

The conic coefficient matrix is given by

A BJ2 D/2
c=| B/2 C EJ2
D/2 Ej2 F

Note that the conic coefficient matrix is symmetric.

16Recall that the Cartesian positions, ¢, are given by z* = zll /zg
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Projective transformation of the conic — First define the transfor-
mation of a point, X as x = TX. Equivalently, X = T~!x. Substituting
into the conic form,

XtcX = xt[T_l]tCT_lx = x!TtcT!x

tex where

This is a quadratic form x
c=TcT 1,
and, again, is a symmetric matrix:

=Tttt =T cT ! =¢

which represents a conic. Thus, a conic is transformed to a conic under
projection.

23.6.3 Equivalence of conics under projection

If we define S = T~ ! then the transformed conic and the original conic
are related by

c = Sstcs.

This matrix relationship defines the congruence of two matrices, c and
Cl7. It is a standard theorem of matrix algebra that every real symmetric
matrix is congruent to a diagonal matrix, so we can write

A 00
c= 0 )\2 0
0 0 X

Thus we can always transform a conic to be centered on the origin and
with its principal axes aligned with the Cartesian coordinate frame. In
this coordinate frame, the conic equation is

Now in order to have a conic with real points it follows that one of the
A; must be negative. So without loss of generality, we can assume the
following form?!® for c,

a2 0 0
c=| 0 B 0
0 0 —2

17The notion of the congruence of two matrices may not be familiar. The concept
should not be confused with the congruence of geometric figures.

18Note that this form is general, in that a matrix with two negative elements can be
returned to this form by scaling by —1.
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This configuration is general since the negative coeflicient can always be
permuted to any position along the diagonal by a congruence operation.
Next we apply the following transformation,

[ 1/a 0 0
s=| 0o 18 o
0 0 1/y

The resulting conic coefficient matrix is

1 0 0
c=101 0
|0 0 -1

Note that these congruencies can be combined into a single congruence
operation by multiplying the individual S matrices. The combined S
matrix corresponds to a single projective transformation.

The final conic equation, z7 + 3 — 1 = 0, represents a circle of unit
radius centered on the origin. Thus any conic can be projectively trans-
formed into a circle. In fact, any two conics are projectively equivalent.
Since any conic can be transformed into a circle, an inverse transform
can be applied to map the circle back to any other arbitrary conic.

23.6.4 The line conic

A conic is a self-dual figure. That is, it can be considered as a locus of
points or as an envelope of tangent lines as shown in Figure 23.15. The
latter view is referred to as a line conic. The key point is that the equa-
tion describing the line coefficients of the tangents is also a quadratic
form. Let X!CX = 0 define a point conic, then the corresponding line
conic equation is U'LU, where L = [C|C™!. The interpretation is that
any line, U, which is tangent to the conic satisfies the line conic equa-
tion. The line conic transforms as, 1 = TLT!, where T is the point
transformation matrix.

23.7 Projective properties of the conic

23.7.1 The polar of a conic

Given a point, P, in the plane, construct the tangents from P to a conic
C as illustrated in Figure 23.15. There are two tangents to the conic
from P. The two points of tangency on the conic define a line, U, which
is called the polar of point P with respect to the conic C. Conversely, P
is called the pole of line U.

The line representation of the polar is given analytically by

Upolar = CPpole- (239)
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polar

pole

Figure 23.15

The pole and polar relation with respect to a conic. The two contact points at which
rays from P are tangent to the conic, define a line, U, called the polar of P with
respect to C. Conversely, the point P is the pole of the line U. The polar line of a
point on the conic is the tangent at that point, U;. The dual figure to a conic is the
envelope of tangent lines as shown in the upper left figure.

Note that the 3 x 3 conic matrix defines a correlation between points
of the plane and corresponding polar lines. Similarly polar lines map
into corresponding poles under the action of C~1. There is not space to
show the derivation of equation (23.9), but the case where P, is on
the conic is easy to demonstrate. In this limiting case the two tangent
lines merge into the same line.
The normal to an implicit curve in the projective plane, f(X1, X2, X3),
is given by
n= 1 5 1+8_fX2+ 6f
X, 0Xs 6X3
We can differentiate, treating each homogeneous coordinate equally,

which is equivalent to finding the normal to the surface in ray space
defined by f(X1, X2, X3) = 0. For a conic curve,

AX1®> 4+ BX1Xo 4+ CXo? + DX1 X3+ EXo X35 + FX32 = 0.

The normal vector is

n = %[(2,4)(1 + BX, + DX3)Xy + (BX1 +2CX, + EX35)X, +
(DX1 + EX> + 2F X3)X3]
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t
P3_ (1, 0: 0)

P, = (0,0,1)

Figure 23.16
A natural triangle of reference for the conic defined by a pole-polar relaton.

where X; are unit vectors along the homogeneous coordinate axes. The
tangent line to the conic at point P must be perpendicular to the normal
and this condition leads to the following line equation,

1
5[(2AX1 + BXs + DX3)X1 + (BXl +2CX5 + EXg)X2+
(DX1 + EXs + 2FX3)X3] =U1 X1 +UX5 +U3X3=0. (2310)

The line coefficients (Uy;, U, Uyz)t can be related to the conic matrix
by noting this vector is the same as that obtained by multiplying the
point vector (X1, X2, X3)! by the conic matrix, i.e.,

U AX; + $BX; + $DX3 A BJ/2 DJ/2 X
Ui = %BX1+CX2+%EX3 = B/2 C E/2 X .
Uiz %DX1 +éEX2+FX3 D/2 E/2 F X3

As mentioned above, Equation (23.10) is a correlation if we interpret the
conic matrix as a projective transformation matrix. That is the conic
coefficient matrix transforms a point, P on the conic into the tangent
line at that point, U; = CP.

In the interpretation of the invariants of conics'® the concept of a self-
polar triangle is important. The definition of self-polar is that each side
of the triangle is the polar line of the opposite vertex. One interesting
result is that if a self-polar triangle of a conic is used as the triangle of
reference then the conic coefficient matrix is diagonal.

19See Chapter 3.
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Figure 23.17

The conic in a special triangle of reference defined by the pole-polar relation. The
points P2 and Pg3 are ideal points and are shown at infinity. The distance, zo =
X2/X3 = 0, parametrizes the conic.

23.7.2 Parametrizing the conic

Another useful result is illustrated in Figures 23.16 and 23.17. Here the
triangle of reference is defined by the pole and polar relation. The pole is
assigned the coordinates, (0,1,0)%, and the two points of tangency from
the pole at the conic are assigned, (0,0, 1)¢,(1,0,0)!. When the conic is
represented in this special triangle of reference, it has the form,

XZ - X, X3 =0. (23.11)

This construction again demonstrates that all conics are projectively
equivalent to a parabola, since any triangle can be mapped onto this
special triangle of reference by a projective transformation. Also, tan-
gency and incidence are preserved under projection.

An important observation can be seen from this special conic form.
Divide equation (23.11) by X2, so (X2/X3)? = (X1/X3) = 6. Thus
the points on the parabola can be represented parametrically as, X(6) =
(62,6,1). Any other conic can be represented with the same parametriza-
tion by applying a projective transformation to the parabola,

X 62
Xo = [T] (7]
X3 1

\S)
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For example, the unit circle at the origin is defined by,

(1—62) -1 0 1 62
X(0) = 20 = 0 20 6
(1+6%) 1 01 1

To see that these projective coordinates describe a unit circle, note that
with the substitution, 8 = tan «,
1 —tan” « 2tan a

r=-——-+5— =cCcos2a Y

5 = ———— =sin2a.
1+ tan® o 1+ tan® o

Another approach to the parametrization of the conic is to construct
a pencil of lines from a fixed point on the conic to any other point on
the conic. A single slope parameter, 8, uniquely defines each line of the
pencil. This parameter represents the point on the conic which intersects
the line of the pencil. As we have seen, the cross-ratio of the lines in
a pencil is invariant under projective transformations. Thus the cross-
ratio of the parameter values of four points on a conic is also invariant.

By Chasles’ theorem, any reference point on the conic defines a fixed
cross-ratio with respect to four other points on the conic. Thus the
cross-ratio of four points on the conic is invariant to parametrization
changes due to the position of the reference point. Since the cross-
ratio depends only on the geometric arrangement of the four points on
the conic, it is invariant to all parametrizations, i.e., Cr(61,60s,603,604) =
Cr(f(61), f(02), f(03), f(04)), where the points of the conic are also spec-
ified by X (6) = (f(6)*, £(6),1)".

23.7.3 Circular points

The concept of circular points will prove useful in the relationship be-
tween Euclidean and projective transformations. A surprising fact is
that all circles intersect the ideal line, X3 = 0, in the same fixed points.
A circle is a special case of the general conic with A = C and B = 0.
Dividing the conic coefficients by A and setting X3 = 0,
X2+ X2+ %Xlxg + %XQX3 + gxg =X+ XZ=0.
X3=0

This equation has two complex roots, I = (1,4,0)* and J = (1, —i,0)?,
called the circular points, which are the same for any circle. The key
point for vision applications is that any transformation of the projective
plane which leaves the circular points fixed is a Euclidean transformation
and conversely any Euclidean transformation leaves the circular points
fixed. Now a Euclidean transformation is of the form,

cosf sinf t,
Te=| —sinf cosf ¢,
0 0 1
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where 6 is a rotation and ¢,,t, represents the translation. Now apply
this transformation to the circular point, I.

cos@ + isinf
TI=| —sinf +icosf
0

This can be written as,

et? 1
e | =e?| i | =1
0 0

since all multiples of a projective point are equivalent.

Conversely, it can be shown that any transformation which leaves the
circular points fixed is a Euclidean transformation?®. The easiest way
to show this is to write the equations for a line, U, which must pass
through both circular points. That is,

Ui+iU, = 0
Uy —iUy = 0.

The equations can be combined to form a composite line conic expres-
sion, U + UZ = 0. This conic represents the double line z3 = 0. We
need to show that any transformation which leaves this line conic fixed is
a Euclidean transformation. We construct the general projective trans-
formation of the line conic and insist that the result has the same conic
coeflicients,

1 00 1 00
01 0|=T1|]0 1 0]T.
000 000

The indicated matrix multiplications impose the following conditions on
the elements of T,

1 + 15, 1
ti1tor +ti2t22 = 0
th +13, = 1
tiitsr +ti12tz2 = 0
to1t31 + 2232 = 0
3 +t3, = 0

where we assume that the elements of T are real. From the last equation
it follows that t3; = t3p = 0. The first three equations define the upper

208trictly speaking, the transformation is constrained to be equiform, i.e., the entire
plane may be scaled uniformly in addition to rotation and translation.
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2 x 2 submatrix of T to be a rotation. The value of ¢33 is not constrained,
so the coordinate axes can be multiplied by an arbitrary scale factor
without affecting the conditions. It follows that T is equiform, i.e., a
Euclidean transformation with uniform scaling

As we shall see in Section 23.9.1, the concept of circular points gen-
eralizes to the concept of the absolute conic which is the intersection
of all spheres with the ideal plane, x4 = 0, in 3D space. The absolute
conic is a key concept for the analysis of camera calibration and cam-
era motion [107]. The invariance of the absolute conic under Euclidean
motions of the camera provides a mechanism for using the general ma-
chinery of projective geometry while constraining the transformations
to correspond to physical camera motions and configurations.

As discussed in Section 23.10.2, camera calibration may be decom-
posed into two parts, internal camera parameters which describe the ge-
ometry of the camera and external parameters which are the six degrees
of freedom associated with the position and orientation of the camera
reference frame in space. The specification of internal parameters is
equivalent to knowing the angle of any ray from the eyepoint through a
given point on the image plane, relative to the coordinate frame of the
camera. A typical reference direction is the ray, from the eyepoint, per-
pendicular to the image plane. This ray pierces the image plane at the
principal point. The specification of the position of the absolute conic
in the image plane is equivalent to knowing the angle between rays, a
key component of internal calibration.

The idea can be illustrated by considering the case of a one-dimension-
al image and perspective projection onto a line as shown in Figure 23.18.
The algebra of the one-dimensional case is simple and allows the concepts
to be presented in a straightforward manner. Assume that the center
of projection is at the origin and the camera axes are aligned with the
Cartesian axes of the projective plane. Also assume that f = 1. With
this camera geometry the circular points project as,

[ 1
. 100 . 1
PTO](I)—[OIO] i _[z]
| 0
(1
) 1 00 . 1
Proj(J) = [0 1 0] —i _[—i]'
| 0
The Cartesian positions of the circular points are zy = 1/i = —i and
xy =1/(—i) =1.

If the camera is subjected to a Euclidean transformation in the plane,
the position of the circular points in the coordinate frame of the camera
is not changed, as we demonstrated earlier. Once the position of the
circular points is known, we can determine the angle between rays from
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Ideal Line

Figure 23.18

The use of circular points to define the angle between lines. The location of the
circular points on the ideal line and in the image is independent of Euclidean trans-
formations of the coordinate frame.

the center of projection and passing through any pair of image points.
Given the external calibration of a camera, these known angles allow the
orientation of a ray to be specified in the plane coordinate frame.

The angle between two rays through image points P; and P, is given
by Laguerre’s projective definition of angle [270],

eil2(d1—92)] — Cr(z1, T2, z1,25) = cos(¢pr — ¢2) + isin(¢dr — ¢2)

where z1, 22 are the Cartesian coordinates of the image points and z, x s
are the images of the circular points. For example, take one point at the
origin of the image line, z; = 0 and the other at z» = +/3 which defines
a 60° angle. Then,

= —— = ¢e" 8
V3 +i
or (¢1 — ¢2) = 60°.
The same approach carries over to central projection onto an image

plane in three-dimensional Euclidean space. The details of this general-
ization are given in Section 23.9.1.

Cr(0,V3, —i,1)

23.7.4 The conic and ambiguity of camera calibration

The application of the projective properties of the conic to camera cali-
bration is illustrated by the following simplified example. The standard
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problem is to compute the parameters of the camera transformation
matrix, given a set of image point correspondences with points in 3D
space. The parameters for the standard perspective camera are defined
in Section 23.10.

We illustrate how the projective properties of the conic simplify the
analysis of this problem by considering the case of a one-dimensional
camera which images points in the plane onto a line. Projection of
points in the plane onto the image line is given by,

X
T | _ | tu tiz tis X; . (23.12)
o) to1 tap  ta3 X,

There are five essential parameters of the 2 x 3 image projection matrix
T since the overall scale is unimportant. Thus, it is necessary to specify
five correspondences between points in the plane and points on the image
line in order to provide a linear system of equations sufficient to solve
for the unknown coefficients of T. A significant issue is to determine if
there is any configuration of points in the plane and camera positions
where the solution is not unique. Such configurations must be avoided
in order to construct a robust camera calibration.

Figure 23.19 shows a set of five reference points. We can se-
lect four of the points and the associated image correspondences, say
{P1,P3,P3,Ps}. We know that the cross-ratio of the points on the
image line, Cr(p1, P2, P3, P4), is the same as the cross-ratio of the im-
age rays through the center of projection, Cr(Uy, Uy, Uz, Uy). From
Chasles’ theorem, it follows that the unknown center of projection must
lie on a conic, C;, which passes through the four reference points and
defines a constant cross-ratio with respect to the image points. Now con-
sider an independent set of four points, {P1, Py, P3,P5} which defines
a second conic, C;. The unknown center of projection, P, is an inter-
section point of the two conics. The other three points of intersection
are {P1,P,,P3}. Thus, in most cases, the intersection of the two con-
ics gives an unique solution for P.. The remaining camera parameters
can be determined from the reference points, given the known camera
center.

However, by Chasles’ theorem, if the center of projection lies on the
conic, C,, uniquely defined by the five reference points, then both C;
and Cy are the same conic, C,. Thus we cannot expect to find a unique
solution to the system of equations derived from equation (23.12) when
the center of projection and any number of reference points lie on a
conic. One can also expect that the solution will be ill-conditioned when
the points and center of projection lie close to a conic. This analysis
is an example of the use of projective geometry concepts to produce a
simple and intuitive picture of problems in photogrammetry and camera
motion.
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Cl
Center of Projection
C

Figure 23.19

A construction to illustrate the condition for ambiguity in camera calibration. When
the center of projection of the camera lies on a conic containing all of the reference
points, then the camera parameters are ambiguous. The top figure shows that if the
angle between rays is known, then the curve of ambiguity is a circle.

A similar development applies for a calibrated camera. The relation-
ship between an image position and the direction of the corresponding
ray in space is known for a calibrated camera. In this case only three
reference points are needed to determine the unknown position and ori-
entation parameters of the camera coordinate frame. The three reference
points define a circle in the plane and when the camera center lies on this
circle, the pose parameters cannot be uniquely determined. This am-
biguity can be seen from an elementary result from trigonometry; that
the angle between lines from a point, P, on a circle to two other points,
A, B is independent of the position of P, as shown in Figure 23.19. This
angle is equal to one half the arc AB. Consequently, the three refer-
ence points lying on a circle project to the same image positions for any
camera with its center of projection anywhere on the circle.

23.8 Non-Euclidean geometry

The concept of the Euclidean distance between two points has no mean-
ing in projective geometry since it is not invariant to transformations of
the projective plane. On the other hand, it is reasonable to ask if there
is any definition of distance between two points which would hold under
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Figure 23.20
A projectively invariant distance can be defined by two points and a conic. In the
dual configuration, the conic defines an invariant angle between two lines.

projective transformations.

An invariant distance measure can be defined with respect to a conic.
Consider the conic and two points shown in Figure 23.20. Assume for
the moment that the line joining the two points, P, Ps, intersects the
conic in two real points, A1, As. Since these four points are collinear
the cross-ratio can be used as an invariant distance measure defined as

D(Pl,Pg) = lOg[CT(Pl,Al,AQ,Pg)]. (2313)

D(P4,P,) is called non-Euclidean distance and has been used in the
theory of relativity.
This definition satisfies the following axioms

1. D(P17P3) ZD(P17P2)+D(P2,P3)’

2. D(P,P)=0;

3. D(Pl,Pg) +D(P2,P1) =0.

Equation (23.13) can be expressed in terms of the coefficient matrix of
the conic, C. The definition depends on the position of the points relative

to the conic. When P4, P, are both inside or both outside the conic the
distance is defined by,

(PicP,)?
(P1CP1)(PiCP3)’

cosh’[D(P1,Py)] =
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If one point is inside the conic and the other outside the conic, then
the terms in the denominator are of opposite sign. To keep the result
real, it is necessary to introduce a minus sign and use the fact that
coshix = cosz,

(PiCP,)?

cos?[D(P1,P2)] = — (P{CP,)(P4CPy)

If all the above properties (given by the axioms) are not needed, then a
simple invariant measure of two points is given by

(PiCP,)?

I(P1,P5,C) = .
P1P2,) = 57cP,) (PheP,)

All of these measures are well defined even if the line joining Py, Py,
does not intersect C in real points.

A similar form gives an invariant measure for the angle between two
lines when the conic C is represented as a line conic, L = |C|C™!. Then
the angle between two lines, Uy, Us, is given by,

G(Ul, Uz) = IOg[CT(Ul s Wl, Wg, U2)]

where W1, W3 are tangents to the conic from the point of intersection
of Uy, U,. The cross-ratio of this pencil of four lines gives the invariant
angle measure. The angle can be expressed in terms of the line conic
coefficients as,

2 (UELU2)2
cosh”(6) (UILU,)(ULLU,)

2 _ (Uiruy)?
cos™(9) = (ULLU,)(ULLU,)

depending on the sign of the quadratic forms, i.e. the right hand sides
of these expressions should always be positive.

These non-Euclidean invariant measures also can be interpreted in
terms of the canonical reference frame developed in Section 23.4.7. For
example, consider the case of two points, A, B, and a conic. Each point
defines two points of tangency on the conic. The resulting four tan-
gency points can be used to transform the four reference points onto a
unit square. The standard Euclidean distance between the transformed
points, a, b, can be used as an invariant distance measure. An advantage
of using the non-Euclidean form is that it is not necessary to compute
the transform parameters.

Both the non-Euclidean distance and angle forms are directly useful in
vision applications. For example, the boundary of the wheel of a car can
be used as a reference conic to define invariant measures for any features
on the car body which are coplanar with the wheel boundary [118].
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23.9 Projective 3D space

23.9.1 Analogies with the projective plane

Many of the results for the projective plane have analogies in three-
dimensional space. The idea of homogeneous coordinates can be ex-
tended to 3D, where projective points in 3D are represented by P =
(X1,Xs, X3,X4). The following summarizes the major results:

Duality — In projective space, points and planes are dual. The equa-
tion of a plane in homogeneous coordinates is:

U1 X1 +UsXs + Uz X3 +Us X4 =0.

Note that the equation is symmetrical in the plane and point coordinates.
All points at infinity lie on the ideal plane, X4 = 0. Planes through the
origin are defined by Uy = 0.

Lines are self-dual entities in 3D projective space and they have a
symmetrical relationship with both points and planes. That is, the in-
tersection of two planes define a line, and the join?! of two points defines
a line as well. Note that there is no simple representation of line coor-
dinates in 3D projective space.

Projective transformation — Projective transformations of 3D
space are represented as a linear transformation in homogeneous co-
ordinates. Just as before, x = TX where T is a 4 x 4 matrix and 15
parameters are needed to specify T up to a scale factor. A plane is
transformed according to, u = T~'U in analogy to the line in the pro-
jective plane.

Cross-ratio of planes — The concept of a cross-ratio can be extended
to planes in space. In this case, the planes are constrained to have a
common line of intersection which again defines a pencil where a single
parameter sweeps out the planes. The angle between the planes can be
used to define a cross-ratio for four such planes. It can be shown that the
cross-ratio of the points of intersection of a line with the pencil of planes
is equal to the cross-ratio defined by the angles between the planes [265].
Similarly, if the pencil of planes intersects another plane, the intersection
forms a pencil of coplanar and concurrent lines. The cross-ratio of the
pencil of these lines of intersection is equal to the cross-ratio of the pencil
of planes.

Quadric surfaces — The quadratic form in 3D, X{QX = 0, corre-
sponds to a quadric surface where Q is a 4 X 4 coeflicient matrix for the
quadric. A quadric is distinguished by being a doubly ruled surface,

21The term join means a linear combination of the two points, i.e. any point, P, on
the line defined by P, P2, is given by P = aP1 + GPa.
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i.e., in general two distinct lines can be found which lie in the surface
and intersect at a given point. The quadric is important in the study
of ambiguity in camera motion. It is shown by Maybank [204] that if
the center of projection of a camera and any number of reference points
lie on a quadric (a hyperboloid of one sheet) then the position of the
camera is ambiguous, i.e. there is more than one point on the surface
where the camera can be placed so that the image of the reference points
is identical. This result is a generalization of the 2D example given in
Section 23.7.4.

The absolute conic — There is an analogy to the circular points in
the projective plane. All spheres in 3D intersect the ideal plane, X, = 0,
in a conic, called the absolute conic. If the 3D space is subjected to a Eu-
clidean transformation, then the absolute conic is fixed. Conversely, any
projective transformation of space which leaves the absolute conic fixed
is a Euclidean transformation??. The equation of a sphere in homoge-
neous coordinates is a special case of a quadric surface. The intersection
of a sphere with the ideal plane, X, = 0 is,

X7+ X7+ X3 =0.

As with the circular points, the conic has only complex points. Many
problems in photogrammetry, structure from motion and camera calibra-
tion can be analyzed in terms of the absolute conic [107]. For example,
the projection of the absolute conic onto an image plane is invariant to
Euclidean motions of the camera in space. This fact provides a conve-
nient way of using many of the results of projective geometry while at
the same time restricting the analysis to physical camera motion. If the
projection of the absolute conic in an image is known, then the angle
between rays from the center of projection can be determined from the
corresponding image points. This specification of ray angles is a major
component of internal camera calibration. The concept is described in
more detail in terms of circular points and the case of a central projection
onto a line?3.

23.9.2 The twisted cubic

There is a cubic curve in projective 3D space which is an analogous form
to the conic in the projective plane. There are a number of interesting
properties of the twisted cubic with importance for vision applications.
For example, it was pointed out by Buchanan [60] that if the center of
projection of a camera and the set of reference points lie on a twisted
cubic, then the camera calibration problem does not have a unique so-
lution.
The canonical twisted cubic is parametrically defined as

22 Actually, uniform scaling of the coordinate space is also allowed. See Section 23.7.3.
23See Section 23.7.3.
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X(0) = (62,6%,6,1)".
The equation for a plane incident with a point on the twisted cubic is,
U10° + Uz0% + Usf + Usg = 0

and has three solutions. It follows that the projection of the twisted
cubic is in general a plane cubic curve. That is, a line in the image
plane will intersect the projection of the twisted cubic three times, since
the line projects to a plane in space and this projected plane intersects
the curve in space three times. A simple corollary is that if the center of
projection is on the twisted cubic, then the image curve is a conic since
one of the three points of intersection is already taken up by the center
of projection.

Another important property is that the cross-ratio of the parameters
of four points on the twisted cubic is the same as the cross-ratio of
the parameters of corresponding points in any projective image of the
curve. Thus an invariant descriptor for any set of features which can
be associated with a twisted cubic is immediately available. This rather
surprising property can be demonstrated with reference to Figure 23.21.
First, construct a line, Lg, from the center of projection, Py through two
points of the twisted cubic?*. Next, define a pencil of planes with the
common line of intersection, Lg. Let the pencil of planes be parametrized
by an angle, 8. Since the line Ly already intersects the cubic in two
points, any plane through Ly must intersect the twisted cubic in a third
point, P(#). Thus we can use the pencil of planes to parametrize the
twisted cubic in an analogous manner to the construction for the conic
in the plane. The cross-ratio of any four points on the twisted cubic is
defined by the cross-ratio of the corresponding planes. Lo changes with
viewpoint. However, it can be shown that the cross-ratio has the same
value for any Py and corresponding Lg2°.

Given this parametrization, we can now demonstrate a remarkable
property. Project the twisted cubic from the center of projection, Py
onto an image plane as shown in Figure 23.21. The line Ly intersects the
image plane at a double point, 1y, of the projected twisted cubic curve,
i.e. two points on the twisted cubic map to a single point in the image?8.
The pencil of planes projects to a pencil of lines in the image with 1y as
the common point of intersection. This pencil of lines can be used to
parametrize the planar curve since any line of the pencil will intersect
the projected curve at only one point. This single point of intersection is
the image of the unique intersection point of the plane and the twisted
cubic, P(#).

241t can be shown that two such points always exist from the general form of the
equations defining the points.

25See Semple and Kneebone [265] corollary page 301.

26There is only one such double point since the existence of two double points would
imply that the twisted cubic is a fourth degree curve.
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Image Plane

Image
Plane

Figure 23.21

A line intersecting the twisted cubic in two points can be used to define a parametriza-
tion of the curve in terms of a pencil of planes through the line. A cross-ratio on this
pencil is invariant under a projective projection onto an image plane.

Since the cross-ratio of lines in the pencil is the same as the cross-ratio
of the pencil of planes in space, we have established the invariance of the
cross-ratio on any central projection of the twisted cubic. This result?”
can be used to great advantage in deriving index functions for curved
surfaces?®. The idea is to define generalized cylinders where the axis
of the cylinder is a twisted cubic. Then various constructions on the
occluding boundary of the object generate distinguished points on the
projection of the axis curve. The invariance of the cross-ratio of these
distinguished points generates a set of invariant descriptors for the 3D
surface.

23.10 The perspective camera

23.10.1 Projective vs perspective image projection

Most of the material up to this point has prepared a framework for the
central purpose of the Appendix, the study of the central projection
of points in 3D space onto an image plane. The essential geometric

2"The result holds for any space curve which can be parametrized as (p(9), ¢(), 0, 1)
where p and ¢ are polynomials in #. Such curves are called curves of genus zero.
28See Chapter 11.
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properties of this projection can be modeled by the mapping of three-
dimensional projective space onto a projective plane, conveniently rep-
resented by a linear homogeneous transformation.

A general projective transformation is defined by a 4 x 4 matrix mul-
tiplication,

1 t11 ti2 tiz f1a X1
To | _ | tor taz t23 t24 Xo
x3 | | ts1 tap t3z tag X3
T4 tar ta2 T4z taa X4

Now, a projection onto a space of one lower dimension can be achieved
by simply eliminating one of the coordinates of the transformed projec-
tive space. For convenience, we select the plane defined by x4 = 0. That
is, all points on the plane can be represented by the homogeneous coor-
dinate vector, (z1,z2,23)!. The selection of the plane z4 = 0 is general
since we can transform any plane to it by a projective transformation of
3D space. The image projection is given by,

X
1 t11 tiz tiz t14 X:
Tz | = | tor t22 taz t24 X; (23.14)
3 t31 t32 133 t34 X,

or x = TX. This homogeneous transformation has 11 essential parame-
ters since the overall scale of the matrix does not matter in homogeneous
coordinates. It has been demonstrated by Roberts [250] that six or more
known reference points in space and the corresponding image points are
sufficient to construct a linear system of equations for the 11 unknown
parameters of T. Each image point provides two equations for the un-
known elements of T and the solution proceeds in a similar manner to
equation (23.4).

The mapping of equation (23.14) can account for many of the ge-
ometric aspects of image formation including the case of viewing the
projection of a projection, e.g. analyzing the shape of a shadow in an
image. The matrix T can be restricted in form to account for the stan-
dard case of projection of 3D space onto an image plane from a single
point, i.e. central projection. This restricted model is called a perspective
camera or the pinhole camera. The geometry of the perspective camera
is defined in Figure 23.22. In the case of perspective the elements of T
take on a meaning associated with the geometry of central projection.
The Euclidean transformation of a point in the world coordinate frame
to the camera frame is given by,

Peom = R(Pworld - O)
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Figure 23.22
The geometry of the perspective camera.

where the matrix,

R, i1 Ti2 T3
R=| Ry | = | rax 722 7a3
R; T3y T3z T33

is the rotation matrix from the world coordinate frame to the camera
coordinate frame. We make use of the notation, R;, to indicate each row
i of R. O is the translation vector from the world origin to the camera
origin. The origin of the camera is taken to be the center of projection.
The transformation is carried out by applying the translation O followed
by the rotation, R.

These two transformations can be applied by a single homogeneous
4 x 4 transformation matrix,

R. —(R:-0)
r-| B2 -(R:-0)
R; —(Rs3-0)

000 1

Note that each element R; represents three elements in a row of the
matrix and the last element is a scalar given by the dot product.
Next, the transformed point is projected onto the image plane by the
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matrix,
10 0 O
TProj = 01 0 0
0 0 1/f 0O

The perpendicular distance from the center of projection to the image
plane is called the focal length, f. The point of intersection of the ray
from the center of projection, perpendicular to the image plane, is called
the principal point. The composite transformation matrix, T = Tp,; TE
is,

Ri —(R,-O)
T=| R, —(R,-0) |. (23.15)
R3/f —(R3-0)/f

As an illustration, take the case where the center of projection is at the
origin and the camera axes are aligned with the world axes. In this case,
T = Tpyoj, which yields the standard perspective imaging equations used
in many vision papers. Given a point in 3D space, (X,Y, Z, 1),

_ n_ X
:L._.’L'3_fZ
_ T _ Y
y = x3—fZ-

It should be noted that the distinction between a perspective trans-
formation and a full projective transformation is that the leftmost 3 x 3
subarray of T in equation (23.15) is restricted to be a rotation matrix
when the coordinates have been scaled so that f = 1.

23.10.2 Intrinsic and extrinsic camera parameters

Equation (23.15) can be rewritten in a form which emphasizes the dis-
tinction between parameters which define the internal geometry of the
camera and parameters which define the external orientation and posi-
tion of the camera coordinate frame. That is,

Sz 0 —tw R1 —(Rl . 0)
T = Tinternai Texternal = 0 Sy _ty R» _(R2 . 0)
0o o0 1/f R; —(R3-0)

Here s,,s, are image coordinate scale factors and t,,t, is the offset of
the principal point. Note that the camera focal length parameter is
moved into the first 3 x 3 matrix so that all the internal parameters are
represented separately. There are actually only four independent inter-
nal parameters since the focal length can be absorbed into the definition
of the other elements of T;nternai- The product of the two matrices maps
a point in 3D directly into image pixel coordinates.
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Under a general projective image mapping the matrix T has 11 essen-
tial parameters. For perspective, the constraints imposed by the camera
geometry and the restriction of Euclidean transformation of the camera
reference frame reduces the overall degrees of freedom to nine, six for the
position and orientation of the camera reference frame and three for the
parameters of the image plane in the camera coordinate system. In the
discussion above, we have identified 11 distinct camera attributes, i.e.,
{R,0,t3,ty, 54,5y, [}. Consequently, these parameters are not all inde-
pendent in their effect on the perspective transformation and therefore
they cannot all be independently recovered from camera calibration.

In areal optical system, additional distortions occur beyond the simple
geometric properties of perspective imaging. For example, the image of
a point in space is not a point in the image but instead becomes a blur
circle due to the finite depth of field of the lens or due to diffraction
limits. In addition, a real lens does not produce a uniform mapping
across the field of view. These effects are called radial distortion. They
become more severe with radial distance from the principal point. It is
common to model radial distortion by a low order polynomial as follows,

Az = Z(Kir* 4+ Kor* 4+ ) + [PL(r? + 22%) 4+ 2P zg][1 + Psr® 4 - -]
Ay = GKir? + Kor* + ) + [Po(r® 4 25°) + 2P23g)[1 + Par? + - -]

where Az, Ay are corrections to the Cartesian image coordinates, Z =
(z —zp) and § = (y — y,) where (zp,y,)" is the principal point and the
radius is defined as r2 = 72 + 2.

The process of measuring the precise geometry of features in the world
from image features is called image mensuration. In order to carry out
accurate mensuration it is necessary to determine the radial distortion
parameters. A good account of a least-mean-squares approach for de-
termining both internal and external camera parameters is given in the
Manual of Photogrammetry [267]. It is also the case that accurate cal-
culation of image invariants will require compensation for these radial
distortions.

23.10.3 The weak perspective camera

When we consider mappings from 3D space onto a 2D image plane,
there is no direct counterpart to the concepts which have been developed
for the planar transformations such as Euclidean, affine and projective
transformations. However, it is still possible to make useful distinctions
among various forms of the 3 x 4 homogeneous projection matrix, T. We
will refer to projections characterized by a 3 x 4 homogeneous matrix as
a camera.

Perhaps the most widely used form in vision literature is the weak
perspective camera. This approximation to perspective viewing has been
used in many vision systems [250, 56, 201, 287]. Weak perspective is a
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limiting form of perspective which occurs when the depth of objects
along the line of sight is small compared with the viewing distance.
This approximation is carried out as follows. Starting with the general
perspective matrix,

R, —(R1-0)
T= R» —(Rz-0)
Rs/f —(Rs-0)/f

Consider a general point in space, P. The transformation of P is,

R, -(P-0)
p=TP=| Ry,-(P-0) |. (23.16)
iR;-(P-0)

The distance d = Rj3 - (P — O) represents the normal distance of the
point P from the image plane, usually called the depth of P. Now given
a set of points, P;, assume that the variation in depth of the points is
small compared to the depth of the centroid of the point set, Py. Let
P; = Py + §;, then

R; - 4;

<< 1.
Rz - (Pg—0O)

Substituting this approximation into equation (23.16),

R;-(P;—0)
pi=T(Po+d;)~ | Ra-(P;—0)
%R3 -(Po—0)

The important result of the approximation is that the homogeneous scale
factor is the same for each p;. That is,

pPi = m(ﬂ%yi; 1! = (zi,:,1)"
where s = f/[Rs - (Po — O)]. This result is equivalent to multiplying
any point in the set by the matrix,

L Ti2 T3 -(R:-0)
Twp= | T21 T22 T23 —(R2-0)
0 0 0 —(Rsz-(Pp—0)/f)

This form can be interpreted as an orthographic projection?® onto the
image plane followed by an isotropic scaling of the image coordinates by
s. For this reason, weak perspective is sometimes called scaled orthog-
raphy. Note that the first two rows of the upper 3 x 3 matrix of T, are
the upper rows of a 3D rotation matrix, R. Since R is orthogonal and of

290rthographic projection is defined in Section 23.10.5.
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Horizon

_—7

Figure 23.23

An illustration of weak perspective. The face of the cube, w is nearly parallel to the
observer. Thus, the depth variation along the face is small, compared to the face s,
and its shape approximates a parallelogram.

unit determinant, it is always possible to recover the missing third row
and this provides a basis for deriving object pose from image features. A
major property of weak perspective is that parallel lines in space remain
parallel in the image.

An illustration of weak perspective is given in Figure 23.23. Note
that face of the cube, w, which is nearly parallel to the image plane, has
less perspective distortion than face s, which has a large depth variation
along the viewing direction. Another observation is that an image may
be locally well-approximated by weak perspective but full perspective
is required globally to accurately represent the entire scene. The total
depth variation across the scene can be large, but each individual object
may satisfy the weak perspective approximation.

23.10.4 The affine camera

In the development of weak perspective, the approximation was based
on a perspective camera and the physical meaning of the weak form of
the projection matrix was readily explained, i.e., the depth of an object
is small compared to the viewing distance.

The form of the matrix T,, suggests that a more general class of
3D — 2D transformation can be defined where there is no restriction on
the form of the elements other than t3; = ¢35 = t33 = 0. We call this
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more general projection the affine camera. Parallelism is still preserved
by the affine camera but the image plane shapes are potentially more dis-
torted since the image coordinates can undergo anisotropic scaling. It is
not clear what viewing process leads to the affine camera approximation.
By analogy to the relationship between perspective and projective trans-
formations in the plane, it may be the case that the affine case results
from viewing a weak perspective image with a weak perspective camera.
In any case, the affine camera form is useful in developing invariants of
3D transformation groups which can be recovered from multiple views
with uncalibrated cameras, as in Section 1.6.3. Allowing for unknown
internal camera parameters is equivalent to the extra degrees of freedom
of the affine camera.

23.10.5 Orthographic projection

Orthographic projection results from the limit where the rays from the
center of projection are parallel. This limit can be represented by letting
the focal length approach infinity while keeping the scale factor at unity.
The form of the perspective transformation matrix becomes,

rin ri2 ri3 —(Rq-0)
Torth = | 21 T22 723 —(Ra-O)
0 0 0 1

The main difference between orthographic projection and weak perspec-
tive is that distances along directions parallel to the image plane are
preserved under orthography. For this reason, orthographic projections
are used extensively in mechanical drawing to define the 3D dimensions
of objects.

23.10.6 Mapping between planes

The general projective or perspective transformation matrix can be used
to specify the mapping between two planes in space. Here the points in
space X; are assumed to lie on a plane. Without loss of generality, it
can be assumed that the first plane corresponds to the X, Y plane of the
world coordinate system and the second plane is the image plane. That
is,

[ 21 ] [ t11 tiz tiz tia ;(
To | = | tor toa to3 fos 0
| T3 | | 131 t32 t33 l34 1
So,
[ 2y ] [ t11 tia tia X
To | = | ta1 22 tos4 Y
| Z3 | | 31 32 t34 1
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Figure 23.24
The perspective mapping between two planes. Note that line Uy is fixed under the
perspectivity.

So we see that the general projective mapping between planes in space
is specified by a 3 x 3 homogeneous transformation as introduced in
Section 23.4.5. The elements of the 3 x 3 matrix correspond to the first,
second, and fourth columns of the original matrix T.

The perspective mapping between two planes is a central projection
from a single point in space where corresponding points in the planes
are collinear with the center of projection. In the case of perspective
mapping it is observed that the first two columns of the 3 x 3 matrix
must be orthogonal and have the same norm in a coordinate frame where
f = 1. With these restrictions, a theory of the perspective plane can be
developed in analogy to the results of Section 23.4. These perspective
transformations between planes are called perspectivities. The geome-
try of a perspectivity is shown in Figure 23.24. The line of intersection
between the two planes is fixed under the perspectivity. It is empha-
sized that perspective mappings of the plane do not form a group since
the composition of two perspectivities is not in general a perspective
transformation, i.e./ the special form of the perspective matrix is not in
general preserved by the product of two such matrices.
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Epipolar
Line

Figure 23.25
The geometry of two perspective views. Lines u;, u, are called epipolar lines.

23.11 Multiple views

It is emerging®®, that a rich theory of invariants can be developed in con-
nection with multiple views of 3D space. The geometry of two arbitrary
perspective views is shown in Figure 23.25. The line joining the centers
of projection of each view, T = LR, intersects each image plane in a
point called the epipole. Given a point in space, P, the plane, [L, R, P],
intersects each image in a line called the epipolar line. The significance
of the epipolar line is seen by fixing the image of P in the left image,
pi. The center of projection, L, and p; defines a ray, Lp;. That is, the
point in space, P, can lie anywhere on this ray. The image of the ray in
the right image plane is just the epipolar line, u,.

Corresponding 3D points, {P;, P,.} in the left and right views can be
related as follows [198, 238]. The left and right coordinate frames are
related by a Euclidean transformation,

P,=RP;+T

Now in general, P; - (T x P,) = 0, for any vectors P, T. The cross
product by T is equivalent to a matrix multiplication by,

0 -t t
T = t, 0 —i,
—ty, 1 0

30See Chapters 14 and 15.
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Thus the vector identity can be written as,
P.EP; =0.

Where E = 7R is called the essential matrix. The image points in homo-
geneous coordinates are proportional to the 3D Cartesian point coordi-
nates. Without loss of generality, assume that the right image coordinate
frame is aligned with the world coordinate frame, then,

Zr 1| X
Yr = Z_ Yvr
1 L Y/

and similarly for the point in the left image. Thus, we have the following
constraint on the homogeneous coordinates on corresponding points in
the left and right images

p.Ep; =0. (23.17)

The same form of equation holds even if the two image views are full
projective transformations. A full projective camera can be formed by
applying a planar projective transformation to a perspective camera
image. Assume that each image is transformed by planar projective
transformations, p; = T;p;, pr = T,p,., then equation (23.17) becomes,

P T, ET pj=p. QAp,=0 (23.18)

so that the original result of Longuet-Higgins, equation (23.17), can be
extended to two arbitrary projective (rather than perspective) image
projections of a 3D point set.

The epipolar relation is derived from equation (23.18) by rewriting it
as,

ul p, = 0.

Thus equation (23.18) is just the equation for a line with the line co-
ordinates given by u, = Q p;. So the matrix Q maps points in the left
image onto lines in the right image. This mapping has a similar form
to a correlation but it is not a true correlation because Q is singular and
has no inverse. It is seen that Q must be singular since all the epipolar
lines meet at the epipole and are thus linearly dependent.

The matrix Q just defined can be used to develop a transfer of features
seen in two images to a third view. The basic idea of transfer using
invariants was developed in Section 23.5 in the context of the cross-
ratio. For the case of two views, with eight point correspondences, it
is possible to transform any point seen in each of the views to a third
image. No camera information is assumed for any of the views. The
approach is illustrated in Figure 23.26. It is assumed that eight points
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=y

3D
8 Correspondences Structure

T,

Figure 23.26

Using the invariant of two views to transfer a model to a third view. Given eight
correspondences between view 1 and view 3 as well as between view 2 and view 3,
any other geometric features can be transferred to the correct shape and position in
view 3.

can be identified between 7, and 7. as well as between 7, and 7.. As
shown by Barrett in Chapter 14, the image position of any ninth point,
x can be found using an invariant of two views which we now derive
from the form of Q. We will show that an invariant can be defined for
two views, on eight reference points, which leads to a transfer procedure
analogous to that described in Section 23.5.5. Expanding the general
form, ptQp = 0,

qi1 12 13 Ty
Plap, = [z w 1] @1 a2 @3 Yr
31 g32 ¢33 1

This result further expands to,

T1Zrq11 + T1Yrqi2 + 21q13 +
YiTrq21 + Y1yrQ22 + Yi1q23 +
Trq31 + Yrgs2 + qi13-

This expansion can also be written as a dot product, b - q, where

t

b = (mlmr;mlyr;xl;ylmr;ylyr;yl;mr;yra1) and

q = (Q11,CI12,(113,(121,Q22,Q317(I3zaQ33)t-
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Given nine points correspondences between the left and right images, a
9 x 9 matrix, B, can be constructed as follows,

by
From the fact that p’Qp = 0, it follows that Bq = 0. In order for
this linear system of equations to have a non-trivial solution for q, the
determinant of B must be identically zero. The condition |B| = 0 is an
invariant for two views since it holds for any position of the cameras and
any selection of the point-set.

This invariant can be used for transfer by selecting eight points and
then transferring any ninth point. Let the transferred point be denoted
by x. The vector b is a quadratic form in two points which we make
more explicit by the notation b(p;,p;). Now referring to Figure 23.26
we can write the form for B between views 1 and 2 as,

b,
B= b,
b(p17 X)

where x denotes the position of x in view 3. Note that the invariant
condition [B| = 0 leads to a linear expression in terms of the coordinates
of x. That is, [B| = 0, can be expanded as

azz + Bys +v=0.

Thus, given eight point correspondences between views 1 and 3, the
position of x lies on a line in image 3. Similarly, another line is defined by
the invariant condition between views 2 and 3. The intersection of these
two lines gives the position of x. Any features such as lines and curves
can be transferred in this manner once eight point correspondences are
available.
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