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Abstract sequences. Further, due to the wide variety of image types and con-
We present a new, interactive tool calledelligent Scissors tent, most current computer based segmentation techniques are

which we use for image segmentation and composition. Fully auto-Slow: inaccurate, and require significant user input to initialize or
mated segmentation is an unsolved problem, while manual tracing®®Ntro! the segmentation process.
is inaccurate and laboriously unacceptable. However, Intelligent This paper describes a new, interactive, digital image segmenta-
Scissors allow objects within digital images to be extracted quickly tion tool called “Intelligent Scissors” which allows rapid object
and accurately using simple gesture motions with a mouse. Wherextraction from arbitrarily complex backgrounds. Intelligent Scis-
the gestured mouse position comes in proximity to an object edgesors boundary detection formulates discrete dynamic programming
a live-wire boundary‘snaps” to, and wraps around the object of (DP) as a two-dimensional graph searching problem. Presented as
interest. part of this tool areoundary coolingndon-the-fly trainingwhich
reduce user input and dynamically adapt the tool to specific types of
pedges. Finally, we preseitte-wire maskingandspatial frequency
equivalencindor convincing image compositions.

Live-wire boundary detection formulates discrete dynamic pro-
gramming (DP) as a two-dimensional graph searching problem. D
provides mathematically optimal boundaries while greatly reducing
sensitivity to local noise or other intervening structures. Robust-
ness is further enhanced with-the-fly trainingwhich causes the 2. Background

boundary to adhere to the specific type of edge currently being fol-  pijgital image segmentation techniques are used to extract image
lowed, rather than simply the strongest edge in the neighborhoodcomponents from their surrounding natural background. However,
Boundary coolingautomatically freezes unchanging segments and currently available computer based segmentation tools are typically
automates input of additional seed points. Cooling also allows theprimitive and often offer little more advantage than manual tracing.

y ‘tions, use an interactively selected seed point to “grow” a region by

~ Extracted objects can be scaled, rotated, and composited usingdding adjacent neighboring pixels. Since this type of region grow-
live-wire masks andpatial frequency equivalencingFrequency  ing does not provide interactive visual feedback, resulting region
equivalencing is performed by applying a Butterworth filter which poundaries must usually be edited or modified.

matches the lowest frequency spectra to all other image compo- Other popular boundary definition methods use active contours

nents. Intelligent Scissors allow creation of convincing composi- -
tions from existing images while dramatically increasing the speed.or snakes, 5, 8, 15] to improve a manually entered rough approx-

L . i . imation. After being initialized with a rough boundary approxima-
and precision with which objects can be extracted. tion, snakes iteratively adjust the boundary points in parallel in an

. attempt to minimize an energy functional and achieve an optimal

1. Introduction boundary. The energy functional is a combination of internal

Digital image composition has recently received much attention forces, such as boundary curvature, and external forces, like image
for special effects in movies and in a variety of desktop applica- gradient magnitude. Snakes can track frame-to-frame boundary
tions. In movies, image composition, combined with other digital motion provided the boundary hasn’t moved drastically. However,
manipulation techniques, has also been used to realistically blendactive contours follow a pattern of initialization followed by energy
old film into a new script. The goal of image composition is to com- minimization; as a result, the user does not know what the final
bine objects or regions from various still photographs or movie boundary will look like when the rough approximation is input. If
frames to create a seamless, believable, image or image sequendee resulting boundary is not satisfactory, the process must be
which appears convincing and real. Fig. 9(d) shows a believablerepeated or the boundary must be manually edited. We provide a
composition created by combining objects extracted from threedetailed comparison of snakes and Intelligent Scissors in section
images, Fig. 9(a-c). These objects were digitally extracted and3.6.

(_:ombine(_:i in a few minutes using a new, interactive tool chltett Another class of image segmentation techniques use a graph
ligent Scissors searching formulation of DP (or similar concepts) to find globally

When using existing images, objects of interest must be extracteddptimal boundaries [2, 4, 10, 11, 14]. These techniques differ from
and segmented from a surrounding background of unpredictablesnakes in that boundary points are generated in a stage-wise optimal
complexity. Manual segmentation is tedious and time consuming,cost fashion whereas snakes iteratively minimize an energy func-
lacking in precision, and impractical when applied to long image tional for all points on a contour in parallel (giving the appearance
of wiggling). However, like snakes, these graph searching tech-
niques typically require a boundary template--in the form of a man-
ually entered rough approximation, a figure of merit, etc.--which is
used to impose directional sampling and/or searching constraints.
This limits these techniques to a boundary search with one degree
of freedom within a window about the two-dimensional boundary
template. Thus, boundary extraction using previous graph search-
ing techniques is non-interactive (beyond template specification),
losing the benefits of further human guidance and expertise.
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The most important difference between previous boundary find-  Since the laplacian zero-crossing creates a binary fed(ug,
ing techniques and Intelligent Scissors presented here lies not in theoes not distinguish between strong, high gradient edges and weak,
boundary defining criteria per se’, but in thethodof interaction. low gradient edges. However, gradient magnitude provides a direct
Namely, previous methods exhibit a pattern of boundary approxi- correlation between edge strength and local cosj.alidl, repre-
mation followed by boundary refinement, whereas Intelligent Scis- sent the partials of an imagé x andy respectively, then the gra-
sors allow the user tinteractively selectthe most suitable  dient magnitud& is approximated with
boundary from a set dll optimal boundaries emanating from a
seed point. In addition, previous approaches do not incorporate on- c = 12+
the-fly training or cooling, and are not as computationally efficient. X
Finally, it appears that the problem of automated matching of spa-r
tial frequencies for digital image composition has not been
addressed previously.

<N

he gradient is scaled and inverted so high gradients produce low
costs and vice-versa. Thus, the gradient component function is

_max(G) -G _ G

3. Intelligent Scissors e T Thax@) " max(o) ®)

Boundary definition via dynamic programming can be formu-
lated as a graph searching problem [10] where the goal is to find th@iving an inverse linear ramp function. Finally, gradient magnitude
optimal path between a start node and a set of goal nodes. A€Osts are scaled by Euclidean distance. To keep the resulting max-
applied to image boundary finding, the graph search consists ofmum gradient at unityg(q) is scaled by 1 ifj is a diagonal neigh-
finding the globally optimal path from a start pixel to a goal pixel-- bor top and by /2 if q is a horizontal or vertical neighbor.
in particular, pixels represent nodes and edges are created betweenThe gradient direction adds a smoothness constraint to the
each pixel and its 8 neighbors. For this paper, optimality is definedboundary by associating a high cost for sharp changes in boundary
as the minimum cumulative cost path from a start pixel to a goal direction. The gradient direction is the unit vector definelqd agd
pixel where the cumulative cost of a path is the sum of the local],, LettingD(p) be the unit vector perpendicular (rotated 90 degrees
edge (or link) costs on the path. clockwise) to the gradient direction at pgir(t.e., forD(p) = (I(p),

-1,(p))), the formulation of the gradient direction feature cost is

3.1. Local Costs

Since a minimum cost path should correspond to an image com- -1 -14 -1
ponent boundary, pixels (or more accurately, links between neigh- fo (b q) TI{ cos[dp (. a)] cos[dq(p.a)] ™3 ()
boring pixels) that exhibit strong edge features should have low
local costs and vice-versa. Thus, local component costs are createghere

from the various edge features:
g dp(p,a) =0 (p) L (p,a)

Image Feature Formulation dq(p, q) =L (p,q) ' (q)
Laplacian Zero-Crossin f
P . . g z are vector dot products and
Gradient Magnitude fo
Gradient Direction f q—p; it D' (p) O(a—p) 20
D L (p,a) = { (5)

p—a; it D' (p) O(a—p) <0
The local costs are computed as a weighted sum of these component
functionals. Lettind(p,q) represents the local cost on the directed is the bidirectional link or edge vector between pixeland g.
link from pixelp to a neighboring pixed, the local cost functionis  Links are either horizontal, vertical, or diagonal (relative to the
position ofqg in p's heighborhood) and point such that the dot prod-
1(pya) = @, 0, (a) +w, Oy (pa) +g g (@) (1) yet of D(p) andL(p, q) is positive, as noted in (5). The neighbor-
hood link direction associates a high cost to an edge or link between
where eachw is the weight of the corresponding feature function. two pixels that have similar gradient directions but are perpendicu-
(Empirically, weights ofv, = 0.43,wp = 0.43, andog = 0.14 seem lar, or near perpendicular, to the link between them. Therefore, the
to work well in a wide range of images.) direction feature cost is low when the gradient direction of the two

The laplacian zero-crossing is a binary edge feature used for edg@ixels are similar to each other and the link between them.
localization [7, 9]. Convolution of an image with a laplacian kernel ) ) ) )
approximates the partial derivative of the image. The laplacian 3.2. Two-Dimensional Dynamic Programming
image zero-crossing corresponds to points of maximal (or minimal) As mentioned, dynamic programming can be formulated as a
gradient magnitude. Thus, laplacian zero-crossings representirected graph search for an optimal path. This paper utilizes an
“good” edge properties and should therefore have a low local costoptimal graph search similar to that presented by Dijkstra [6] and
If 1.(q) is the laplacian of an imaget pixelq, then extended by Nilsson [13]; further, this technique builds on and

extends previous boundary tracking methods in 4 important ways:

0; if I =0 : Lo . . .
t,(a) = { i1 (a) ) 1. Itimposes no directional sampling or searching constraints.
1; it 1 (a) #0 2. It utilizes a new set of edge features and costs: laplacian

zero-crossing, multiple gradient kernels.
However, application of a discrete laplacian kernel to a digital The active list is sorted with anig)(sort forN nodes/pixels
image produces very few zero-valued pixels. Rather, a zero-cross- o ) - P '
ing is represented by two neighboring pixels that change from pos- 4. No a priori goal nodes/pixels are specified.
itive to negative. Of the two pixels, the one closest to zero is used_. ) e -
to represent the zero-crossing. The resulting feature cost contain§irst, formulation of boundary finding as a 2-D graph search elimi-

single-pixel wide cost “canyons” used for boundary localization. ~ nates the directed sampling and searching restrictions of previous
implementations, thereby allowing boundaries of arbitrary com-



plexity to be extracted. Second, the edge features used here are 11 13 12 9 5 8 3 1 2 4 10
more robust and comprehensive than previous implementations: we 4 11 7 4 2 5 8 4 & 3 8
maximize over different gradient kernels sizes to encompass the
various edge types and scales while simultaneously attempting to 6 3 5 7 9 1211107 4
balance edge detail with noise suppression [7], and we use the lapla- 7 4 6 11 13 18 17 14 8 5 2
cian zero-crossing for boundary localization and fine detail live- 6 2 7 10 15 15 21 19 8 3 5
wire “snapping”. Third, the discrete, bounded nature of the local
edge costs permit the use of a specialized sorting algorithm that 8 3 4 7 9 131415 9 5 6
inserts points into a sorted list (called the active list) in constant 1 5 2 8 3 4 5 7 2 5 9
time. Fourth, the live-wire tool is free to define a goal pixel inter- 2 4 @1 5 6 3 2 4 8 12
actively, at any “free” point in the image, after minimum cost paths
are computed tall pixels. The latter happens fast enough that the v e 9 8 53 7T 8B
free point almost always falls within an expanding cost wavefront @
and interactivity is not impeded. 6\?/12 111 /23
The Live-Wire 2-D dynamic programming (DP) graph search 7.2 11 7.2 9 5|20 72 9 5=9
algorithm is as follows: 4%1 4\%@:} : ’:e 161‘4 \ﬁ(b‘l‘ :/—e \13
[N / N
Algorithm: Live-Wire 2-D DP graph search. B 77 8 7 6 14]|18 13 7 6 14
(b) (©) (d)
Input: 41_35 31 20 35
s {Start (or seed) pixel.} Nty v S
I( q,r) {Local cost function for link between pixels g and r.} 38\29 23 2224 <29
28 18 16«21 =28 37
Data Structures: v
L {List of active pixels sorted by total cost (initially empty).} 18 lf /16 27 %8
N(q) {Neighborhood set of q (contains 8 neighbors of pixel).} 14 8 13 20 29 35 52 35 28 32
e(q) {Boolean function indicating if g has been expanded/processed.} 14\_\:3 g 12 11 22528 35 27 25 ‘el
g(q) {Total cost function from seed point to q.} A VY VS VS
18—7 2 9 5 =9 =44 <21 18 =23 B2
Output: 16-»4 hy j :ie «i2 13 =35 <19 =7 >o
p {Pointers from each pixel indicating the minimum cost path.} [N AN AN
18 13 7 6 14 17 18 17 =24 30
Algorithm: (e)
g(s) «0; L «s; {Initialize active list with zero cost seed pixel.} 5 21 35 31 29 3B <0 %o
while L #0 do begin {While still points to expand:} ¥ o
g —min(L); {Remove minimum cost pixel g from active list.} 38 ‘@3 43
e(q) -« TRUE; {Mark q as expanded (i.e., processed).} 49 47 40 3
for each r[ON(q) such that note( r) do begin
Yimp ~9(AH( g, 1); {Compute total cost to neighbor.} 18 _(12) 16«27 38 53 59 53 89 33 3
if rOL and g tmp<g(r) then {Remove higher cost neighbor’s } 14_(8) 13 20" 20 35 49 54 35 26 )32
r—L; { from list.}
if rOL then begin {If neighbor not on list, } 14—~6)_ 6 ,/12 14 22 2% 3% 27 31
a(r) ~Otmp: { assign neighbor's total cost, } 18—>7 Q 9 4 <21 @ 3 B2
r) <q; set (or reset) back pointer,
E(_r); ) } and(place or)1 (or re?urn to)% 164 @ a 6312 37 -9
end { active list.} 18 13 7 6 14 17 18 17 =4 30 =5
end ®
end

Figure 1: (a) Initial local cost matrix. (b) Seed point (shaded)

. . . .. expanded. (c) 2 points (shaded) expanded. (d) 5 points (shaded)
Notice that since the active list is sorted, when a new, lower cumu- expanded. (e) 47 points expanded. (f) Finished total cost and path

lative cost is computed for a_pixel already on the list then that poi_nt matrix with two of many paths (free points shaded) indicated.

must be removed from the list in order to be added back to the list

with the new lower cost. Similar to adding a point to the sorted list, have now been expanded--the seed point and the next lowest cumu-
this operation is also performed in constant time. lative cost point on the active list. Notice how the points diagonal

Figure 1 demonstrates the use of the 2-D DP graph search algot© the seed point have changed cumulative cost and direction point-
rithm to create a minimum cumulative cost path map (with corre- €rs. The Euclidean weighting between the seed and diagonal points
sponding optimal path pointers). Figure 1(a) is the initial local cost Makes them more costly than non-diagonal paths. Figures 1(d),
map with the seed point circled. For simplicity of demonstration 1(€), and 1(f) show the cumulative cost/direction pointer map at
the local costs in this example are pixel based rather than link base¥arious stages of completion. Note how the algorithm produces a
and can be thought of as representing the gradient magnitude costvavefront” of active points emanating from the initial start point,
feature. Figure 1(b) shows a portion of the cumulative cost andcalled the seed point, and that the wavefront grows out faster where
pointer map after expanding the seed point (with a cumulative costthere are lower costs.
of zero). Notice how the diagonal local costs have been scaled by ] ) ) )

Euclidean distance (consistent with the gradient magnitude cost3-3- Interactive “Live-Wire” Segmentation Tool

feature described previously). Though complicating the example, Once the optimal path pointers are generated, a desired boundary
weighing by Euclidean distance is necessary to demonstrate that theegment can be chosen dynamically via a “free” point. Interactive
cumulative costs to points currently on the active list can change ifmovement of the free point by the mouse cursor causes the bound-
even lower cumulative costs are computed from as yet unexpandedry to behave like a live-wire as it adapts to the new minimum cost
neighbors. This is demonstrated in Figure 1(c) where two pointspath by following the optimal path pointers from the free point back



Current.

Free Paint "

Figure 2: Image demonstrating how the live-wire segment adapts and
snaps to an object boundary as the free point moves (via cursor move-
ment). The path of the free point is shown in white. Live-wire segments
from previous free point positiong,(t;, and ) are shown in green.

to the seed point. By constraining the seed point and free points to
lie near a given edge, the user is able to interactively “snap” and
“wrap” the live-wire boundary around the object of interest. Figure
2 demonstrates how a live-wire boundary segment adapts to
changes in the free point (cursor position) by latching onto more
and more of an object boundary. Specifically, note the live-wire
segments corresponding to user-specified free point positions at
timesty, t;, andt,. Although Fig. 2 only shows live-wire segments
for three discrete time instances, live-wire segments are actually
updated dynamically and interactively (on-the-fly) with each move-
ment of the free point.

When movement of the free point causes the boundary to digress
from the desired object edge, interactive input of a new seed point
prior to the point of departure reinitiates the 2-D DP boundary
detection. This causes potential paths to be recomputed from the
new seed point while effectively “tieing off” the boundary com-
puted up to the new seed point.

Note again that optimal paths are computed from the seed point
to all points in the image (since the 2-D DP graph search produces
a minimum cost spanning tree of the image [6]). Thus, by selecting
a free point with the mouse cursor, the interactive live-wire tool is
simply selecting an optimal boundary segment from a large collec-
tion of optimal paths.

Dynamic Cost Map

Gradient Magnitude

Gradient Magnitude

© (d)

e}

Since each pixel (or free point) defines only one optimal path to
a seed point, a minimum of two seed points must be placed to
ensure a closed object boundary. The path map from the first see
point of every object is maintained during the course of an object’s
boundary definition to provide a closing boundary path from the
free point. The closing boundary segment from the free point to the

Figure 4: Comparison of live-wire (a) without and (b) with dynamic
training. (&) Without training, the live-wire segment snaps to nearby
strong edges. (b) With training, it favors edges with similar characteris-
tics as those just learned. (c) The static gradient magnitude cost map
shows that without training, high gradients are favored since they map
to low costs. However, with training, the dynamic cost map (d) favors
gradients similar to those sampled from the previous boundary segment.

first seed point expedites boundary closure. the boundary is forced to pass through the seed points). To facilitate
Placing seed points directly on an object's edge is often difficult seed point placement, a cursor snap is available which forces the

and tedious. If a seed point is not localized to an object edge themouse pointer to the maximum gradient magnitude pixel within a

spikes results on the segmented boundary at those seed points (singger specified neighborhood. The neighborhood can be anywhere

Seed Points
1y

/ :
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Figure 3: Comparison of live-wire without (a) and with (b) cooling.
Withot cooling (a), all seed points must be placed manually on the
object edge. With cooling (b), seed points are generated automatically
as the live-wire segment freezes.

(b)

from 1x1 (resulting in no cursor snap) toXl% (where the cursor
can snap as much as 7 pixels in botindy). Thus, as the mouse
cursor is moved by the user, it snaps or jumps to a neighborhood
pixel representing a “good” static edge point.

3.4. Path Cooling

Generating closed boundaries around objects of interest can
require as few as two seed points (for reasons given previously).
Simple objects typically require two to five seed points but complex
objects may require many more. Even with cursor snap, manual
placement of seed points can be tedious and often requires a large
portion of the overall boundary definition time.



Automatic seed point generation relieves the user from preciseclosest portion of the current defined object boundary. A training
manual placement of seed points by automatically selecting a pixelength.t, specifies how many of the most recent boundary pixels are
on the current active boundary segment to be a new seed pointused to generate the training statistics. A monotonically decreasing
Selection is based on “path cooling” which in turn relies on path weight function (either linearly or Gaussian based) determines the
coalescence. Though a single minimum cost path exists from eaclrontribution from each of the closégtixels. This permits adaptive
pixel to a given seed point, many paths “coalesce” and share portraining with local dependence to prevent trained feature from
tions of their optimal path with paths from other pixels. Due to being too subject to old edge characteristics. The closest pixel (i.e.,
Bellman’s Principle of Optimality [3], if any two optimal paths the current active boundary segment endpoint) gets a weight of 1
from two distinct pixels share a common point or pixel, then the two and the point that ispixels away, along the boundary from the cur-
paths are identical from that pixel back to the seed point. This is parfent active endpoint, gets a minimal weight (which can be deter-
ticularly noticeable if the seed point is placed near an object edgemined by the user). The training algorithm samples the
and the free point is moved away from the seed point but remaingrecomputed feature maps along the clagazels of the edge seg-
in the vicinity of the object edge. Though a new optimal path is ment and increments the feature histogram element by the corre-
selected and displayed every time the mouse cursor moves, theponding pixel weight to generate a histogram for each feature
paths are typically identical near the seed point and object edgesnvolved in training.
and only change local to the free point. As the free point moves far- - atter sampling and smoothing, each feature histogram is then
ther and farther away from the seed point, the portion of the activescaled and inverted (by subtracting the scaled histogram values

live-wire boundary segment that does not change becomes longekom jts maximum value) to create the feature cost map needed to
New seed points are generated at the end of a stable segment (i.gnvert feature values to trained cost functions.

that has not changed recently). Stability is measured by time (in

milliseconds) on the active boundary and path coalescence (number SiNce training is based on learned edge characteristics from the
of times the path has been redrawn from distinct free points). most recent portion of an objects boundary’ training Is most effep-
tive for those objects with edge properties that are relatively consis-

This measure of stability providgs th.e live-wire segment with a {ent along the object boundary (or, if changing, at least change
sense of “cooling”. The longer a pixel is on a stable section of thegmqothly enough for the training algorithm to adapt). In fact, train-
live-wire boundary, the cooler it becomes until it eventually freezes ing can be counter-productive for objects with sudden and/or dra-
and automatically produces a new seed point. matic changes in edge features. However, training can be turned on

Figure 3 illustrates the benefit of path cooling. In Fig. 3(a), the and off interactively throughout the definition of an object bound-
user must place each seed point manually on the object boundanary so that it can be used (if needed) in a section of the boundary
However, with cooling (Fig. 3(b)), only the first seed point (and last with similar edge characteristics and then turned off before a drastic
free point) need to be specified manually; the other seed points werehange occurs.
generated automatically via cooling.

3.6 Comparison with Snakes

3.5. Interactive Dynamic Training Due to the recent popularity of snakes and other active contours
On occasion, a section of the desired object boundary may havenodels and since the interactive boundary wrapping of the live-

a weak gradient magnitude relative to a nearby strong gradientwire may seem similar to the “wiggling” of snakes, we highlight

edge. Since the nearby strong edge has a relatively lower cost, theshat we feel are the similarities and their corresponding differences

live-wire segment snaps to the strong edge rather than the desirebetween snakes and Intelligent Scissors.

weaker edge. This can be seen in Fig. 4(a). The desired boundary

is the woman's (Harriet's) cheek. However, since part of it is so Similarities (compare with correspondingfeiences below):

close to the high contrast shoulder of the man (Ozzie), the live-wire1, The gradient magnitude cost in Intelligent Scissors is similar to

snaps to the shoulder. the edge energy functional used in snakes.

Training allows dynamic adaptation of the cost function based on2_Both methods employ a smoothing term to minimize the effects
a sample boundary segment. Training exploits an object's bound- of noise in the boundary.

ary segment that is already considered to be good and is performe . . .

dynamically as part of the boundary segmentation process. As ag '3?(‘;'1(856 danedfelgltﬁ-r\év;re boundaries are both attracted towards
result, trained features are updated interactively as an object bound- gedg i ) ] ) ]
ary is being defined. On-the-fly training eliminates the need for a4. Both techniques attempt to find globally optimal boundaries to
separate training phase and allows the trained feature cost functions try to overcome the effects of noise and edge dropout.

to adaptwithin the object being segmented as well as between 5. Snakes and Intelligent Scissors both require interaction as part of
objects in the image. Fig. 4(b) demonstrates how a trained live-wire  the boundary segmentation process.

segment latches onto the edge that is similar to the previous training

segment rather that the nearby stronger edge. Differences (compare with corresponding similarities above):

To facilitate training and trained cost computation, a gradient 1. The laplacian zero-crossing binary cost feature seems to have not
magnitude feature map or image is precomputed by scaling the min- been used previously in active contours mddgs DP bound-
imized gradient magnitude imad®, into an integer range of size ary tracking methods for that matter).

ng (i-e., from O tang - 1). The actual feature cost is determined by 2 The active contour smoothing term is internal (i.e., based on the
mapping these feature values through a look-up table which con- ¢ontour's point positions) whereas the smoothing term for live-

tains the scaled (weighted) cost for each value. Fig 4(c) illustrates \yire houndaries is computed from external image gradient direc-
edge cost based on gradient magnitude without training. Note that o2(next page)

with training (Fig. 4(d)) edge cost plummets for gradients that are
specific to the object of interest’s edges.

. Selec_tlon of _a HQOOd_” bOL_mdary segment for _trf"un'ng is made 1. Kass et al. [8] did use a squared laplacian energy functional to show the rela-
interactively using the live-wire tool. To allow training to adapt to tionship of scale-space continuation to the Marr-Hildreth edge detection theory. How-

i ot i iever, the squared laplacian does not represent a binary condition, nor could it since the
slow (OI’ SmOOth) Changes n edge characteristics, the trained gradlvarir:ltional calculus minimization used in [8] required that all functionals be differen-

ent magnitude cost function is based only on the most recent Ofiable.




3. Snakes are typically attracted to edge features only within thelution of the image. This may produce jaggies along object bound-
gravity of an edge’s gradient energy valley whereas the live-wire aries in a resulting composition. However, subpixel accuracy can
boundary can snap to strong edge features from arbitrary dis-be obtained by exploiting the signed output of the laplacian opera-
tances (since the 2-D DP’s search window is the entire image). tor. That is, the position of the object edge can be estimated to sub-

4. Snakes are globally optimal over the entire contour whereas live-Pixel accuracy by using a (linearly) weighted combination of the
wire boundaries are piece-wise optimal (i.e., optimal between laplacian pixel values on either side of the zero-crossings.
seed points). We feel this creates a desirable balance between Since the live-wire boundary will not always correspond to a
global optimality and local control. This piece-wise optimality zero-crossing, jaggies can also be reduced by appropriate edge fil-
also allows for path cooling and intra-object on-the-fly training. tering, similar to anti-aliasing. Edge filtering is also desirable

5. Finally, snakes refine (and interactively “nudge” by placing Pecause real world images are acquired using finite image detectors
springs, etc.) a single rough boundary approximation where the@d, as a result, pixels on or near an object boundary share informa-
live-wire tool interactivelyselectsan optimal boundary segment tion (i-., color) from the object and the background.
from potentiallyall possible minimum cost paths. One approach to edge filtering is to perform a local post-smooth-

ing of the image around the pasted object boundary. However, this

Interactive optimal 2-D path selection is what makes Intelligent does not account for the fact that the edge pixels of the cut object

Scissors work and is the key difference between Intelligent Scissorsyery likely contain some background information from the original

and all previous techniques. Snakes are interactively initializedimage. This is most noticeable when an object is composited into a

with an approximate boundary contour (often requiring several scene with a different background color than the object’s original

manually placed points); this single contour is then iteratively background color. A more general solution would determine how
adjusted in an attempt to minimize an energy functional. The live- much of each edge pixel corresponds to the actual object color and
wire tool, on the other hand, is interactively initialized with just a weight them accordingly when combining into another image.
single seed point and it then generates, at interactive speeds, all pos-

sible optimal paths from the seed poinet@ryother point in the 4.2. Spatial Frequency and Contrast Matching

image, thus, allowing the user to |nteract|vely_ select t.he deS|rgd Once the object of interest has been segmented from the sur-

optimal boundary segment. As a result, Intelligent Scissors typi- yonding background we can scale it, rotate it, color it, or paste it

cally require less time and effort to segment an object than it takesyntg another (destination) image. When pasting, it is desirable to
to manually input an initial approximation to the object boundary. perform image composition “seamlessly” in order to make it believ-
Actually, the live-wire tool is much more similar to previous able. That is, we should not be able to detect where the paste
stage-wise optimal boundary tracking approaches than it is tooccurred. However, the source and the destination images will
snakes, since Intelligent Scissors were developed as an interactiveften have differing spatial frequencies or contrast due to differ-
2-D extension to previous optimal edge tracking methods ratherences in focus or lighting when the images were acquired. Thus,

than an improvement on active contours. equivalencing of spatial frequencies and normalization of contrast
is sometimes desirable in order to produce a convincing composi-
4. Image Composition with Intelligent Scissors tion.

As mentioned, composition artists need an intelligent, interactive Equivalencing of spatial frequencies is performed by matching
tool to facilitate image component boundary definition. Since Intel- € spectral content of the cut piece and the destination image in the
ligent Scissors can quickly segment object from an image, it serve</icinity where it is to be pasted. Convincing composition often
as a tool for cut and paste operations. After object boundaries havEquires the spectra of the object and the destination image to
been extracted, object can be copied from the image and placed intg'atch. This is accomplished by low-pass filtering the spectrum
a buffer (i.e., clipboard) for future processing and placement into With the higher frequency content to match that of the other. The
another image, or the same image if desired. spectrum with the higher frequency content is determined by
arameter fitting of a Butterworth low-pass filter (BLPF) to both
pectra. Parameters corresponding to the spectrum with the lower
requency content are used to low-pass filter the spectrum of the
other image.

The cut object can be transformed--i.e., rotated, scaled, and tran£
lated, (RST)--before combination with the destination image. This ¢
is done using an interactive graphical tool with “handles” for RST
control. The tool specifies a 2-D RST transformation maltfix, .
The source image is then bilinearly interpolated through the matrix 1he BLPFB(U, v, do, n) is given by

to paste the cut object into the destination image. 1

Image composition often requires blending an object from one B (u, v, dg,n) = ﬁ
image into another image such that the cut-out object is not in the - [ u +V}
foreground. This requires the composition artist to “slip” the cut- o

out object behind some scene components while leaving it in front

of other components. This operation can again be performed usingvhered, is the distance of the cutoff frequency from the origin and
the live-wire tool to create a composition mascene components  niis the filter order.

can be cut out of an image to create a mask such that any additions gqyivalencing of spatial frequencies is performed by first com-

or changes to the scene will not affect masked pixels. puting the fourier transform§(u, v) andi(u, v) of the source image
o 9%, y) and the destination imadgx, y). We then compute the log
4.1. Edge Filtering power spectra(u, v) andi(u, v):

As described, live-wire boundaries are limited by the pixel reso-

s(u,v) =log [S(u v)]?
. _ 2
2. Admittedly, the gradient direction cost used in Intelligent Scissors is more i (u,v) =tog [1 (u,v)]
susceptible to noise in areas of low contrast (since it computes a smoothness cost
based only on two points and one link). However, it is possible to extend the gradient By varying the two parameted@ andn, a least squares fit can be

g:‘;i%(i:grcl)gyt.erm to include 3 pixels and 2 links without significant loss of computational used to create a normalized Butterworth ﬂBQI, v, dO'r n.) (Where

1. Similar in concept to an optical mask used in motion picture special effects.



dy' andn' are the fit parameters) matched to the spatial frequencycost map. For color images, we maximize feature values over the
characteristics of(u, v). If i(u, v) demonstrates lower spatial fre- three color bands rather than averaging.

quency content thasfu, v), the spatial frequencies between the two  preyiously, dynamic programming approaches to boundary

images can be equivalenced by fittB(g, v, dy’, n) tos(u, v). The detection were typically computationally expensive. However, by
equivalenced result using the inverse Fourier transform formulating DP as a graph search and restricting the local costs to
, -1 . integer values within a range, the 2-D DP algorithm can take advan-
s'(xy) =F 7[B(u v dyn) B5(u V] tage of an Q) sort forN points. As mentioned, adding points to

) ) _ ] the sorted active list and removing points from it requires constant
is then pasted oni¢x, y). Prior to pasting, the colors in the source time. As a result, the algorithm’s computational complexityNor
image are scaled to the range(@fy) to account for differences in  image pixels is @{). This can be seen by examining the algorithm

contrast. in a worst case situation. As a pixel is removed from the active list,
it is expanded by computing the cumulative cost to all of its neigh-
5. Results bors that have not already been expanded. In the worst case, a pixel

pas its cumulative cost computed by all of its 8 neighbors, resulting
n 8N cumulative cost computations fbirpixels. Obviously, not
every point can be expanded after all of its neighbors have. Except
or the seed point, every point that has a cumulative cost must have
at least one neighboring point that has already been expanded. Thus

and 3. Fig. 7 (a CT image of a lumbar spine) demonstrates the IiVethe cumulative cost is not recomputed for those neighbors. In short
wire's application to medical imaging. The boundary definition . P - 9 s '
it can be shown that at most onlM dumulative cost computations

times (for a trained user) for each displayed object boundary are ‘ d lting i lqorith
given in the caption of each respective figure. are performed, resulting in anKj(algorithm.

Figure 8 graphically compares the live-wire boundary definition :
times and boundary accuracy with manual tracing. These resultsG.Conc.:lusmns. and Futu.re work o )
show the average time and accuracy from a study where 8 untrained Intelligent Scissors provide an accurate and efficient interactive
users were asked to define the boundaries of five objects (the twotool for object extraction and image composition. In fact, and in

objects in Fig. 5, the paper clip holder and pocket knife in Fig. 6, sharp contrast to tedious manual boundary definition, object extrac-
and the outer boundary of the spinal vertebrae in Fig. 7). tion using the live-wire is almost as much fun as the final result (the

composition). Intelligent Scissors are intuitive to use and can be
applied to existing black and white or color images of arbitrary
complexity. There are many rich extensions of this work, including:
él) making use of the weighted zero-crossings in the Laplacian to
perform subpixel edge filtering and anti-aliasing, (2) use of multi-

Figures 5, 6, and 7 show the boundaries defined using Intelligen
Scissors on a variety of image types. Fig. 5 is an artificial testimag
that exhibits gaussian edge blurring and point noise typical of som
imaging hardware. Fig. 6 is the desktop scene used in Figures

Figures 9(a-c) demonstrates Intelligent Scissors application to
color images and show the boundaries defined using Intelligent
Scissors for the image composition in Fig. 9(d). Objects were
scaled, rotated, and (in the case of Fig. 9(a)) flipped to produce th

final composition in Fig. 9(d). Note also that live-wire masking was ple layered (multiplane) masks, (3) making spatial frequency

performed on.some of.the foreground (grass). ) equivalencing locally adaptive, (4) varying the light source over
Preprocessing requires 36 convolutions for color images (from tne object using directional gradient shading (artificial or borrowed)
3x3, 55, 7x7, and $9 kernels), a gradient orientation calculation, g provide consistent lighting in the composition, and, most impor-
a maximum gradient neighborhood search, and creation of a Ioca{anﬂy (5) extension of the 2-D DP graph search and application of
the live-wire snap and training tools to moving objects and moving,

Boundary Definition Time 400 Accuracy multiplane masks for composition of image sequences.
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