Announcements

- Midterm went out on Tuesday (due next Tuesday)
- Project 3 out today

Recovering 3D from images

So far, we've relied on a human to provide depth cues

• parallel lines, reference points, etc.

How might we do this automatically?

• What cues in the image provide 3D information?

Visual cues

Shading

Merle Norman Cosmetics, Los Angeles

Shading		
Texture	Others: • Highlights • Shadows	
Focus	SilhouettesInter-reflections	
Motion	 Symmetry Light Polarization 	
Shape From X • X = shading	u texture, focus, motion,	

Mark Twain at Pool Table", no date, UCR Museum of Photography

Stereograms online

UCR stereographs
 <u>http://www.cmp.ucr.edu/site/exhibitions/stereo/</u>
The Art of Stereo Photography
 http://www.photostuff.co.uk/stereo.htm
History of Stereo Photography
http://www.rpi.edu/~ruiz/stereo_history/text/historystereog.html
Double Exposure
 <u>http://home.centurytel.net/s3dcor/index.html</u>
Stereo Photography
 <u>http://www.shortcourses.com/book01/chapter09.htm</u>
3D Photography links
 <u>http://www.studyweb.com/links/5243.html</u>
National Stereoscopic Association
 http://204.248.144.203/3dLibrary/welcome.html
Books on Stereo Photography
 http://userwww.sfsu.edu/~hl/3d.biblio.html
A free pair of red-blue stereo glasses can be ordered from Rainbow Symphony Inc

Stereo results

- Data from University of Tsukuba
- Similar results on other images without ground truth

Scene

Ground truth

State of the art method Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, International Conference on Computer Vision, September 1999.

Stereo reconstruction pipeline

Steps

- Calibrate cameras
- Rectify images
- · Compute disparity
- Estimate depth

What will cause errors?

- · Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Real-time stereo

Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Used for robot navigation (and other tasks)

Several software-based real-time stereo techniques have been developed (most based on simple discrete search)

Summary

Things to take away from this lecture

- Cues for 3D inference, shape from X
- Epipolar geometry
- Stereo image rectification
- Stereo matching
 - window-based epipolar search
 - effect of window size
- sources of errorActive stereo
 - structured light
 - laser scanning