Announcements

- Add through registration system
- Project 1 is out today
 help session at the end of class

Extracting objects

How could this be done?

Image Segmentation

Many approaches proposed

- color cues
- region cues
- contour cues

We will consider a few of these

Today:

- Intelligent Scissors (contour-based)
 - E. N. Mortensen and W. A. Barrett, <u>Intelligent Scissors for Image</u> <u>Composition</u>, in ACM Computer Graphics (SIGGRAPH '95), pp. 191-198, 1995

Intelligent Scissors

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions (t_0 , t_1 , and t_2) are shown in green.

Intelligent Scissors

Approach answers a basic question

- Q: how to find a path from seed to mouse that follows object boundary as closely as possible?
- A: define a path that stays as close as possible to edges

Dijkstra's shortest path algorithm

Properties

- It computes the minimum cost path from the seed to every node in the graph. This set of minimum paths is represented as a tree
- Running time, with N pixels:
 - O(N²) time if you use an active list
 - O(N log N) if you use an active priority queue (heap)
 takes < second for a typical (640x480) image
- Once this tree is computed once, we can extract the optimal path from any point to the seed in O(N/2) time.
 – it runs in real time as the mouse moves
- What happens when the user specifies a new seed?

