Announcements

Today's Readings • Nalwa 2.1

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an objectDo we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurringThe opening known as the **aperture**
- How does this transform the image?

How does multiplying the projection matrix change the transformation?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$
$$\begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} -dx \\ -dy \\ z \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

Modeling distortion	
Project $(\hat{x}, \hat{y}, \hat{z})$ to "normalized" image coordinates	$\begin{array}{rcl} x'_n &=& \hat{x}/\hat{z} \\ y'_n &=& \hat{y}/\hat{z} \end{array}$
Apply radial distortion	$ \begin{aligned} r^2 &= x'_n{}^2 + y'_n{}^2 \\ x'_d &= x'_n(1+\kappa_1r^2+\kappa_2r^4) \\ y'_d &= y'_n(1+\kappa_1r^2+\kappa_2r^4) \end{aligned} $
Apply focal length translate image center	$\begin{array}{rcl} x' &=& fx_d' + x_c \\ y' &=& fy_d' + y_c \end{array}$
To model lens distortion • Use above projection of projection matrix multip	operation instead of standard plication