

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Shrinking the aperture

Adding a lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus" - other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

A lens focuses parallel rays onto a single focal point

- focal point at a distance f beyond the plane of the lens - f is a function of the shape and index of refraction of the lens
- Aperture of diameter D restricts the range of rays - aperture may be on either side of the lens
- Lenses are typically spherical (easier to produce)

Lenses

Thin lens equation
$\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}$

- Any object point satisfying this equation is in focus
- What is the shape of the focus region?
- How can we change the focus region?

Depth of field

Changing the aperture size affects depth of field

- A smaller aperture increases the range in which the object is approximately in focus

The eye

The human eye is a camera

- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- photoreceptor cells (rods and cones) in the retina

Modeling projection

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP - Why?
- The camera looks down the negative z axis
- we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x, y, z) to COP
- Derived using similar triangles (on board)

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right)
$$

- We get the projection by throwing out the last coordinate:

$$
(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)
$$

Homogeneous coordinates

Is this a linear transformation?

- no-division by z is nonlinear

Trick: add one more coordinate:

$$
\begin{array}{cc}
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & (x, y, z) \Rightarrow\left[\begin{array}{l}
x^{-} \\
y \\
z \\
1
\end{array}\right. \\
\text { homogeneous image } & \text { coordinates } \\
\text { homogeneous scene } \\
\text { coordinates }
\end{array}
$$

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x^{-} \\
y \\
z \\
1
\end{array}=\right.} & {\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}
\end{array}\right] \Rightarrow d^{\frac{y}{z}}\right) .\left[\begin{array}{c}
\text { divide by third coordinate }
\end{array}\right.
$$

This is known as perspective projection

- The matrix is the projection matrix
- Can also formulate as a 4×4 (today's reading does this)

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}=\left[\begin{array}{c}
x \\
y \\
z \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z}, \quad-d \frac{y}{z}\right)\right.} \\
& \text { divide by fourth coordinate }
\end{aligned}
$$

Perspective Projection

How does multiplying the projection matrix change the transformation?

$$
\left.\begin{array}{l}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}
\end{array}\right] \frac{\left.-d \frac{y}{z}\right)}{\left[\begin{array}{cccc}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}=\left[\begin{array}{c}
-d x \\
-d y \\
z
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)\right.} .
$$

Orthographic projection

Special case of perspective projection

- Distance from the COP to the PP is infinite

Other types of projection

Scaled orthographic

- Also called "weak perspective"

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / d
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}=\left[\begin{array}{c}
x \\
y \\
1 / d
\end{array}\right] \Rightarrow(d x, d y)\right.
$$

Affine projection

- Also called "paraperspective"

$$
\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Also called "parallel projection"
-What's the projection matrix?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)\right.
$$

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point ($x_{c}^{\prime}, y_{c}^{\prime}$), pixel size (s_{x}, s_{y})
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{x}=\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi} \mathbf{X}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations
$\boldsymbol{\Pi}=\left[\begin{array}{ccc}-f s_{x} & 0 & x_{c}^{\prime} \\ 0 & -f s_{y} & y_{c}^{\prime} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{cc}\mathbf{R}_{3 \times 3} & \mathbf{0}_{3 \times 1} \\ \mathbf{0}_{1 \times 3} & 1\end{array}\right]\left[\begin{array}{cc}\mathbf{T}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\ \mathbf{0}_{1 \times 3} & 1\end{array}\right]$
intrinsics projection
otation
ranslation
- The definitions of these parameters are not completely standardized - especially intrinsics-varies from one book to another

Summary

Things to take away from this lecture

- Properties of a pinhole camera
- effects of aperture size
- Properties of lens-based cameras
- focal point, optical center, aperture
- thin lens equation
- depth of field
- circle of confusion
- Modeling projection
- homogeneous coordinates
- projection matrix and its elements
- orthographic, weak perspective, affine models
- Camera parameters
- intrinsics, extrinsics

Distortion

Modeling distortion

$$
\begin{array}{ll}
\begin{array}{cl}
\text { Project }(\hat{x}, \hat{y}, \hat{z}) \\
\text { to "normalized" } \\
\text { image coordinates }
\end{array} & x_{n}^{\prime}=\hat{x} / \bar{z} \\
& y_{n}^{\prime}=\hat{y} / \hat{z} \\
& r^{2}=x_{n}^{\prime 2}+y_{n}^{\prime 2} \\
\text { Apply radial distortion } & x_{d}^{\prime}=x_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& y_{d}^{\prime}=y_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& x^{\prime}=f x_{d}^{\prime}+x_{c} \\
\begin{array}{c}
\text { Apply focal length } \\
\text { translate image center }
\end{array} & y^{\prime}=f y_{d}^{\prime}+y_{c}
\end{array}
$$

To model lens distortion

- Use above projection operation instead of standard projection matrix multiplication

