Announcements

- Project1 artifact reminder
 counts towards your grade
- Demos this Thursday, 12-2:30
 sign up!
- Extra office hours this week
 - David (T 12-1, W/F 1:30-2:30)
 - Jiwon (T 2:30-3:30, W 3:30-4:30)
 - Steve (T 1:30-2:30)
- · Q's from last lecture
 - convolution and derivatives
 - laplacian scale factor

Laplacian of Gaussian scaling $\int_{a}^{x \cdot 10^{-7}} \int_{a}^{a} \int_{a}^{y \cdot 10^{-7}} \int_{x}^{y} \int_$

Motion Estimation

http://www.sandlotscience.com/Distortions/Breathing_objects.htm

http://www.sandlotscience.com/Ambiguous/barberpole.htm

Today's Readings

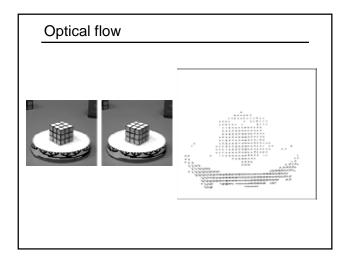
Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199)
 Numerical Recipes (Newton-Raphson), 9.4 (first four pages)

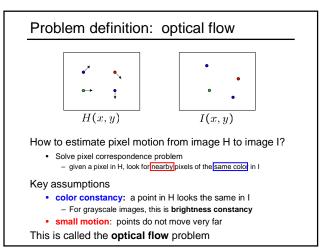
 http://www.ulib.org/webRoot/Books/Numerical_Recipes/bookcpdf/c9-4.pdf

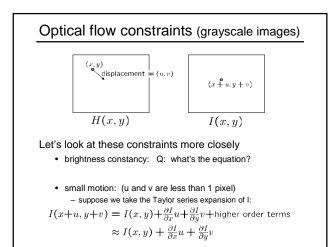
Why estimate motion?

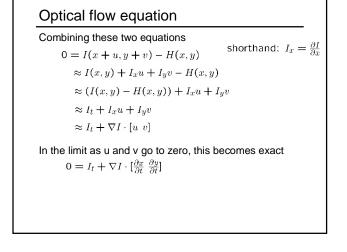
Lots of uses

- Track object behavior
- Correct for camera jitter (stabilization)
- Align images (mosaics)
- 3D shape reconstruction Special effects









Optical flow equation

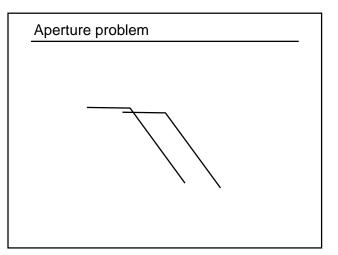
 $0 = I_t + \nabla I \cdot [u \ v]$

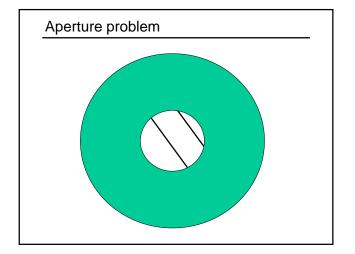
Q: how many unknowns and equations per pixel?

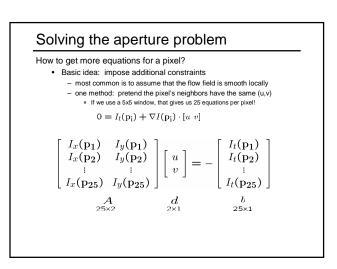
Intuitively, what does this constraint mean?

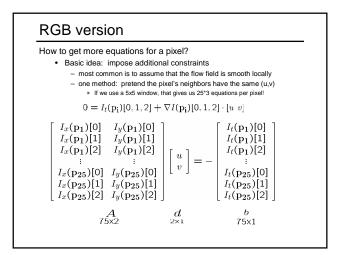
- · The component of the flow in the gradient direction is determined
- The component of the flow parallel to an edge is unknown

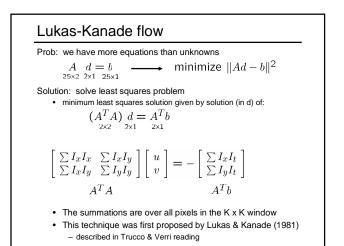
This explains the Barber Pole illusion http://www.sandlotscience.com/Ambiguous/barberpole.htm

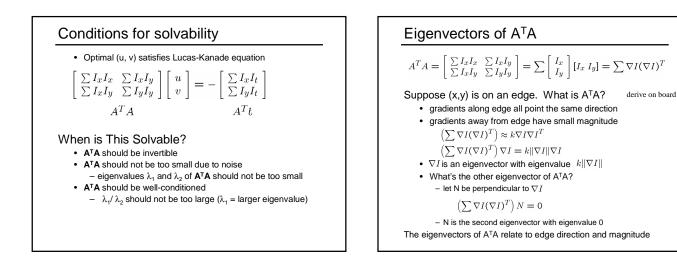


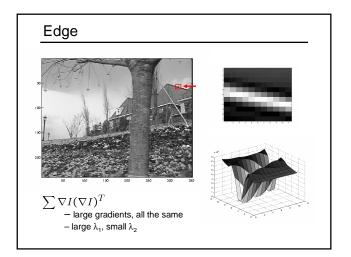


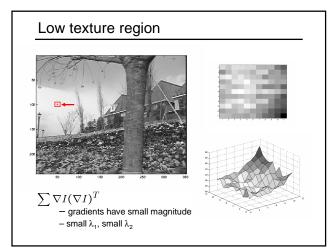


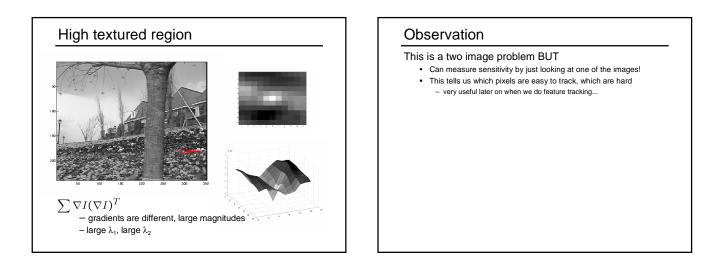












Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

- Suppose A^TA is easily invertible
- · Suppose there is not much noise in the image

When our assumptions are violated

- Brightness constancy is **not** satisfied
- The motion is not small
- A point does not move like its neighbors
 - window size is too large
 - what is the ideal window size?

Improving accuracy

Recall our small motion assumption

$$0 = I(x + u, y + v) - H(x, y)$$

 $\approx I(x,y) + I_x u + I_y v - H(x,y)$

This is not exact

- To do better, we need to add higher order terms back in:
 - $= I(x, y) + I_x u + I_y v +$ higher order terms H(x, y)

This is a polynomial root finding problem

- Can solve using Newton's method
 - Also known as Newton-Raphson method
 Today's reading (first four pages)
 - » http://www.ulib.org/webRoot/Books/Numerical_Recipes/bookcpdf/c9-4.pdf
- Lukas-Kanade method does one iteration of Newton's method

1D case

- Better results are obtained via more iterations

Iterative Refinement

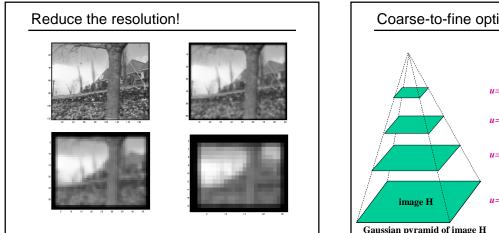
Iterative Lukas-Kanade Algorithm

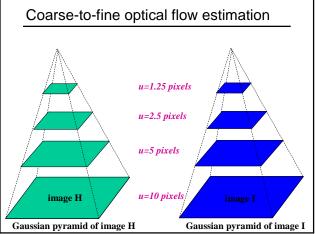
- 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
- 2. Warp H towards I using the estimated flow field
- use image warping techniques
- 3. Repeat until convergence

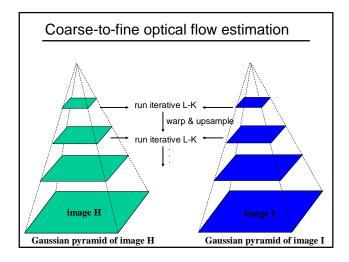
Revisiting the small motion assumption

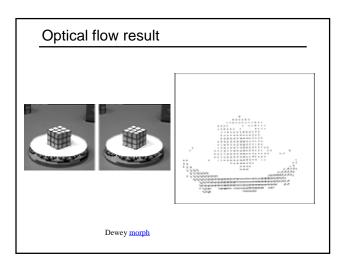
Is this motion small enough?

- Probably not-it's much larger than one pixel (2nd order terms dominate)
- · How might we solve this problem?









Motion tracking

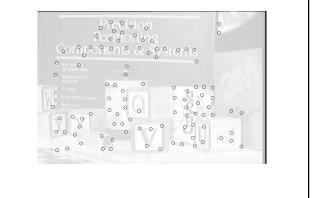
Suppose we have more than two images

- How to track a point through all of the images?
 - In principle, we could estimate motion between each pair of consecutive frames
 - Given point in first frame, follow arrows to trace out it's path
 Problem: DRIFT
 - small errors will tend to grow and grow over time—the point will drift way off course

Feature Tracking

- · Choose only the points ("features") that are easily tracked
- How to find these features?
 - windows where $\sum
 abla I (
 abla I)^T$ has two large eigenvalues
- Called the Harris Corner Detector

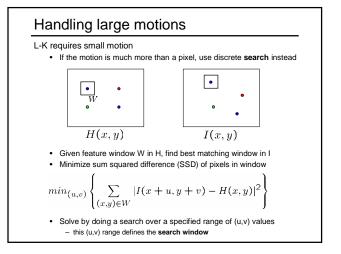
Feature Detection



Tracking features

Feature tracking

- Compute optical flow for that feature for each consecutive H, I
- When will this go wrong?
 - Occlusions-feature may disappear
 - need mechanism for deleting, adding new featuresChanges in shape, orientation
 - allow the feature to deform
 - Changes in color
 - Large motions
 - will pyramid techniques work for feature tracking?



Tracking Over Many Frames

Feature tracking with m frames

- 1. Select features in first frame
- 2. Given feature in frame i, compute position in i+1
- 3. Select more features if needed
- 4. i=i+1
- 5. If i < m, go to step 2

Issues

- Discrete search vs. Lucas Kanade? - depends on expected magnitude of motion
- discrete search is more flexible Compare feature in frame i to i+1 or frame 1 to i+1?
- affects tendency to drift ..
- How big should search window be?
- too small: lost features. Too large: slow

Incorporating Dynamics

Idea

- · Can get better performance if we know something about the way points move
- · Most approaches assume constant velocity

$$\dot{\mathbf{x}}_{i+1} = \dot{\mathbf{x}}_i$$

$$x_{i+1} = 2x_i - x_{i-1}$$

or constant acceleration

$$\ddot{\mathbf{x}}_{i+1} = \ddot{\mathbf{x}}_i$$

- $\mathbf{x}_{i+1} = 3\mathbf{x}_i 3\mathbf{x}_{i-1} + \mathbf{x}_{i-2}$
- Use above to predict position in next frame, initialize search

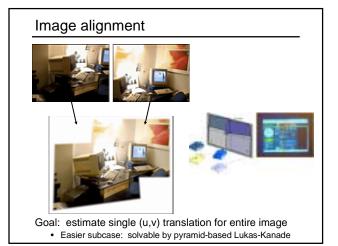
Feature tracking demo

Oxford video

http://www.toulouse.ca/?/CamTracker/?/CamTracker/FeatureTracking.html

MPEG—application of feature tracking

http://www.pixeltools.com/pixweb2.html



Summary

Things to take away from this lecture

Optical flow problem definition
Aperture problem and how it arises

- Assumptions
- Brightness constancy, small motion, smoothness
 Derivation of optical flow constraint equation
 Lukas-Kanade equation
- LUKAS-KANADE EQUATION
 Derivation
 Conditions for solvability
 meanings of eigenvalues and eigenvectors
 Iterative refinement

 - Newton's method
 Coarse-to-fine flow estimation
- Coalse-to-intensive scantaux.
 Feature tracking
 Harris feature detector
 L-K vs. discrete search method
 Tracking over many frames
 Prediction using dynamics
- Applications
 MPEG video compression