Announcements

Laplacian of Gaussian scaling

* Projectl artifact reminder
< counts towards your grade

« Demos this Thursday, 12-2:30
« sign up!

» Extra office hours this week
« David (T 12-1, W/F 1:30-2:30)
« Jiwon (T 2:30-3:30, W 3:30-4:30)
« Steve (T 1:30-2:30)

e Q's from last lecture
« convolution and derivatives
« laplacian scale factor

Motion Estimation

Why estimate motion?

http://www.sandlotscience.com/Distortions/Breathing_objects.htm

http://www.sandlotscience.com/Ambiguous/barberpole.htm

Today's Readings
« Trucco & Verri, 8.3 — 8.4 (skip 8.3.3, read only top half of p. 199)
« Numerical Recipes (Newton-Raphson), 9.4 (first four pages)
— http://www.ulib.org/webRoot/Books/Numerical_Recipes/bookcpdf/c9-4.pdf

Lots of uses
« Track object behavior
« Correct for camera jitter (stabilization)
Align images (mosaics)
« 3D shape reconstruction
« Special effects

Optical flow

Problem definition: optical flow

" e, .
- 1 -
H(x,y I(z,y)

How to estimate pixel motion from image H to image 1?
« Solve pixel correspondence problem
— given a pixel in H, look for[nearby]pixels of the[same colo} in |
Key assumptions
« color constancy: a pointin H looks the same in |
— For grayscale images, this is brightness constancy
+ small motion: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)

Optical flow equation

Gey) ‘
.\gisplacement = (. 1)
oLyt
H(x.y) I(x,y)

Let's look at these constraints more closely
« brightness constancy: Q: what's the equation?

« small motion: (uand v are less than 1 pixel)
— suppose we take the Taylor series expansion of I:

I{(x+u, y+v) = I(a, y)—{—%u—l—%v—i—higher order terms
~ T(r oI or
~I(z.y)+ Gru+ ?Ty“

Combining these two equations
O=IHz+uy+v)— H(x,y)
~I(zy) + Lu+ Iyv — H(a,y)
~ (I, y) — H(z,9) + Teu + Iyv
&I+ Lew+ Iy
~ I+ VI [uv]

shorthand: I,

In the limit as u and v go to zero, this becomes exact

— dx O
0=1+VI-[& %

— oI
— Oz

Optical flow equation

Aperture problem

O=5L+VI - |uw

Q: how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

« The component of the flow in the gradient direction is determined
« The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/barberpole.htm

Aperture problem

Solving the aperture problem

How to get more equations for a pixel?
« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally
— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!

0= Ii(pi) + VI(p;) - lu v]

L(p1) Iy(p1) Ii(p1)
Iz(Pz) Iy(Pz) u| _ It(?z)

Ix:(p2s) Iy(p2s) Ii(p2s)
A o4 b

25Xx2 2x1 25x1

RGB version

How to get more equations for a pixel?
« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally
— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25*3 equations per pixel!

0=I(pp[0,1,2] + VI(py)[0.1.2] - [u o]

I:(p1)[0] Iy(p1)[O] Ii(p1)[0]
L(p[1] Iy(p1)[1] IL(p1)[1]
I.x-(P})[Q] fy(P})[Q] [“] II(P})[Q]
L(p25)[0] Iy(p2s)[0] | L " 1i(p2)[0]
Io(p25)[1] Iy(p2s)[1] Ii(p2s)[1]
L(p2s)[2] Iy(p25)[2] Ii(p25)(2]

d b

75x%2 2x1 75x1

Lukas-Kanade flow

Prob: we have more equations than unknowns
A d=b —— minimize ||Ad — b|?
25x2 2x1 25x1
Solution: solve least squares problem
« minimum least squares solution given by solution (in d) of:

(ATA) d = AT

2x2 2x1 2x1

YLy S LIy | [uv] _ [SLk
SLly Sy || v |~ 7| Syl

AT A ATy

» The summations are over all pixels in the K x K window
» This technique was first proposed by Lukas & Kanade (1981)
— described in Trucco & Verri reading

Conditions for solvability

« Optimal (u, v) satisfies Lucas-Kanade equation

SLiy YLy [uvw] _ [SLi
SLly SIgy||v |~ " | Sy

AT A ATy

When is This Solvable?
« ATA should be invertible
« ATA should not be too small due to noise
— eigenvalues A, and A, of ATA should not be too small
* ATA should be well-conditioned
— A4/ A, should not be too large (A, = larger eigenvalue)

Eigenvectors of ATA

ATA= [%ﬁy gyg] =3 [51] e L) =Y vI(vD)!
Suppose (x,y) is on an edge. What is ATA? derive on board
« gradients along edge all point the same direction
« gradients away from edge have small magnitude
(Cvieen”) xkvivi”
(S vi(wnT) VI =k|vI|vI
« VIis an eigenvector with eigenvalue k||VI||

« What's the other eigenvector of ATA?
— let N be perpendicular to VI

(Cviwn’)N=o0

— N is the second eigenvector with eigenvalue 0
The eigenvectors of ATA relate to edge direction and magnitude

S vivn®

— large gradients, all the same
—large A, small A,

Low texture region

S vivnT
— gradients have small magnitude
—small A, small A,

High textured region

S vivn® =
— gradients are different, large magnitudes * -
—large Ay, large A,

Observation

This is a two image problem BUT
« Can measure sensitivity by just looking at one of the images!
« This tells us which pixels are easy to track, which are hard
— very useful later on when we do feature tracking...

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?
« Suppose ATA is easily invertible
« Suppose there is not much noise in the image

When our assumptions are violated
< Brightness constancy is not satisfied
¢ The motion is not small
« A point does not move like its neighbors
— window size is too large
— what is the ideal window size?

Improving accuracy

Recall our small motion assumption
O=IHz+uy+v)— H(x,y)
= I(z,y)+ Lu+ Tyv— H(z,y)

This is not exact
« To do better, we need to add higher order terms back in:

= I(@,y) + Iru + Iyv + nigher order terms — H(z, y)

This is a polynomial root finding problem

« Can solve using Newton’s method 1D case
— Also known as Newton-Raphson method on board
— Today’s reading (first four pages)
» http://www.ulib.org/webRoot/Bo i Recipes/hc -4.pdf

* Lukas-Kanade method does one iteration of Newton's method
— Better results are obtained via more iterations

lterative Refinement

Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence

Reuvisiting the small motion assumption

Is this motion small enough?

« Probably not—it's much larger than one pixel (2" order terms dominate)

+ How might we solve this problem?

Reduce the resolution!

Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=10 pixels’

Gaussian pyramid of image H Gaussian pyramid of image |

Coarse-to-fine optical flow estimation

- '— run iterative L-K -

lwarp & upsamp

.—’ run iterative L-K +——

Gaussian pyramid of image H

Gaussian pyramid of image |

Optical flow result

Dewey morph

Motion tracking

Suppose we have more than two images

« How to track a point through all of the images?
— In principle, we could estimate motion between each pair of
consecutive frames
— Given point in first frame, follow arrows to trace out it's path
— Problem: DRIFT
» small errors will tend to grow and grow over time—the point will
drift way off course

Feature Tracking
« Choose only the points (“features”) that are easily tracked
« How to find these features?
— windows where Z VI(VI)T has two large eigenvalues

« Called the Harris Corner Detector

Feature Detection

o - o
Q Q
oo ©
o o
o g, e
o o OOOO
o o s} [s]
Q o =)
o o O 40200 o
of fqa e} 1
oo o
[s] o o @ o o]
[Sile L o o
o 91 0%
<] SMEm 4
o O oo ° o =

Tracking features

Handling large motions

Feature tracking
« Compute optical flow for that feature for each consecutive H, |

When will this go wrong?
« Occlusions—feature may disappear
— need mechanism for deleting, adding new features
« Changes in shape, orientation
— allow the feature to deform
« Changes in color
« Large motions
— will pyramid techniques work for feature tracking?

L-K requires small motion

If the motion is much more than a pixel, use discrete search instead

- - (-]

H(x.y) I(z,y)

Given feature window W in H, find best matching window in |
Minimize sum squared difference (SSD) of pixels in window

MUy) > Hz+u.y+v)— H(z, y)|2

(xy)eW

Solve by doing a search over a specified range of (u,v) values
— this (u,v) range defines the search window

Tracking Over Many Frames

Incorporating Dynamics

Feature tracking with m frames
1. Select features in first frame
. Given feature in frame i, compute position in i+1
. Select more features if needed
L=+l
. Ifi<m,gotostep2

a b~ wWN

Issues

« Discrete search vs. Lucas Kanade?
— depends on expected magnitude of motion
— discrete search is more flexible

* Compare feature in frame i to i+1 or frame 1 to i+1?
— affects tendency to drift..

* How big should search window be?
— toosmall: lost features. Too large: slow

Idea

« Can get better performance if we know something about the
way points move

« Most approaches assume constant velocity
Xit1 = X
Xit1 = 2%, — X3
or constant acceleration
X1 = X
Xi41 = 3% —3%X_1+ %2

* Use above to predict position in next frame, initialize search

Feature tracking demo

Image alignment

Oxford video
http://www.toulouse.ca/?/CamTracker/?/CamTracker/FeatureTracking.html

MPEG—application of feature tracking
« http://www.pixeltools.com/pixweb2.html

Goal: estimate single (u,v) translation for entire image
» Easier subcase: solvable by pyramid-based Lukas-Kanade

Summary

Things to take away from this lecture

Optical flow problem definition
Aperture problem and how it arises
Assumptions

— Brightness constancy, small motion, smoothness
Derivation of optical flow constraint equation
Lukas-Kanade equation

— Derivation

— Conditions for solvability

— meanings of eigenvalues and eigenvectors
Iterative refinement

— Newton’s method

— Coarse-to-fine flow estimation
Feature tracking

— Harris feature detector

— L-Kvs. discrete search method

— Tracking over many frames

— Prediction using dynamics
Applications

— MPEG video compression

10

