Announcements

- Project 1 artifact voting
- Project 2 out today (help session at end of class)

How to do it?

Basic Procedure

- Take a sequence of images from the same position - Rotate the camera about its optical center
- Compute transformation between second image and first - Lucas \& Kanade registration
- Shift the second image to overlap with the first

Blend the two together to create a mosaic

- If there are more images, repeat

Aligning images

How to account for warping?

- Translations are not enough to align the images
- Photoshop demo

Image reprojection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane

Image reprojection

Basic question

- How to relate two images from the same camera center? - how to map a pixel from PP1 to PP2

Answer

- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

Homographies
Perspective projection of a plane

- Lots of names for this:
- homography, texture-map, colineation, planar projective map
- Modeled as a 2D warp using homogeneous coordinates

To apply a homography \mathbf{H}

- Compute $\mathbf{p}^{\prime}=\mathbf{H p} \quad$ (regular matrix multiply)
- Convert p' from homogeneous to image coordinates
- divide by w (third) coordinate

Cylindrical projection

- Map 3D point (X,Y,Z) onto cylinder

$$
(\hat{x}, \hat{y}, \hat{z})=\frac{1}{\sqrt{x^{2}+z^{2}}}(X, Y, Z)
$$

unwrapped cylinder

- Convert to cylindrical coordinates

$$
(\sin \theta, \dot{h}, \cos \theta)=(\hat{x}, \hat{y}, \widehat{z})
$$

- Convert to cylindrical image coordinates

$$
(\tilde{x}, \tilde{y})=(f \theta, f h)+\left(\tilde{x}_{c}, \tilde{y}_{c}\right)
$$

Panoramas

What if you want a 360° field of view?

Cylindrical reprojection

How to map from a cylinder to a planar image?

side view

top-down view

- Apply camera projection matrix - for project 2, account for focal length and assume principle point is at center of image " $x_{c}^{\prime}=1 / 2$ image width, $y_{c}^{\prime}=1 / 2$ image height

- Convert to image coordinates - divide by third coordinate (w)

Cylindrical reprojection

Image 384×300

$\mathbf{f}=\mathbf{2 8 0}$

$\mathbf{f}=\mathbf{3 8 0}$

Map image to cylindrical coordinates

- need to know the focal length

Cylindrical panoramas

Steps

- Reproject each image onto a cylinder
- Blend
- Output the resulting mosaic

Cylindrical image stitching

What if you don't know the camera rotation?

- Solve for the camera rotations
- Note that a rotation of the camera is a translation of the cylinder!
- Use Lukas-Kanade to solve for translations of cylindrically-warped images

Project 2 (out today)
1. Take pictures on a tripod (or handheld)
2. Warp to cylindrical coordinates
3. Automatically compute pair-wise alignments
4. Correct for drift
5. Blend the images together
6. Crop the result and import into a viewer

Forward warping

Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=h(x, y)$ in the second image
Q: what if pixel lands "between" two pixels?
A: distribute color among neighboring pixels (x^{\prime}, y^{\prime})

- Known as "splatting"

Inverse warping

Get each pixel $g\left(x^{\prime}, y\right)$ from its corresponding location $(x, y)=h^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image

Q: what if pixel comes from "between" two pixels?

Inverse warping

Get each pixel $g\left(x^{\prime}, y\right)$ from its corresponding location $(x, y)=h^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image

Q: what if pixel comes from "between" two pixels?
A: resample color value

- We discussed resampling techniques before
- nearest neighbor, bilinear, Gaussian, bicubic

Forward vs. inverse warping
Q: which is better?

A: usually inverse—eliminates holes

- however, it requires an invertible warp function-not always possible...

Other types of mosaics

Can mosaic onto any surface if you know the geometry

- See NASA's Visible Earth project for some stunning earth mosaics - http://earthobservatory.nasa.gov/Newsroom/BlueMarble/

Summary

Things to take home from this lecture

- Image alignment
- Image reprojection
- homographies
- cylindrical projection
- Radial distortion
- Creating cylindrical panoramas
- Image blending
- Image warping - forward warping
- inverse warping
- bilinear interpolation

