Edge Detection	
SHADOW From Santal Science	
Today's readings Cipolla and Gee supplemental: Forsyth, chapter 9 Watt, 10.3-10.4 	

Finding lines in an image

Option 1:

- · Search for the object at every possible position in the image
- What is the cost of this operation?

Option 2:

• Use a voting scheme: Hough transform

Hough transform algorithm

Typically use a different parameterization

- $d = x\cos\theta + y\sin\theta$
- d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis
- Why?

Hough transform algorithm

Typically use a different parameterization

- $d = x\cos\theta + y\sin\theta$
- d is the perpendicular distance from the line to the origin
- $\boldsymbol{\theta}$ is the angle this perpendicular makes with the x axis
- Why?

Basic Hough transform algorithm

- Initialize H[d, θ]=0
- 2. for each edge point I[x,y] in the image
 - for $\theta = 0$ to 180
 - $d = x cos \theta + y sin \theta$
 - H[d, θ] += 1
- 3. Find the value(s) of (d, $\theta)$ where H[d, $\theta]$ is maximum
- 4. The detected line in the image is given by $d = xcos\theta + ysin\theta$
- What's the running time (measured in # votes)?

Hough line demo

Extensions

- Extension 1: Use the image gradient
 - 1. same
 - 2. for each edge point I[x,y] in the image compute unique (d, $\theta)$ based on image gradient at (x,y) $H[d,\,\theta] \mbox{ += 1 } 1$
- 3. same
- 4. same
- What's the running time measured in votes?

Extensions

Summary

Things to take away from this lecture

- What is an edge and where does it come from
- Edge detection by differentiation
- Image gradients
- continuous and discrete
- filters (e.g., Sobel operator)
- Effects of noise on gradients
- Derivative theorem of convolution
- Derivative of Gaussian (DoG) operator
- Laplacian operator

 Laplacian of Gaussian (LoG)
- Canny edge detector (basic idea)
- Effects of varying sigma parameter
- Approximating an LoG by subtraction
- Hough Transform