CSE 454

Infrmation Retrieval & Indexing

gy s
e show results
— To user

store documents,
check for duplicates,
extract links

create an

Standard Web Search Engine Architecture
inverted

index

inverted
index

Search
engine
servers

P

A Closeup View

/29 — IR & Indexing
— Pagerank

1/31 - No class

2/5 —No class

2/7 - Query processing

Relevance

¢ Complex concept — extensive study
— Less consensus
— People often disagree on relevance
— Many factors...
¢ Retrieval models make various assumptions
about relevance to simplify problem
— e.g., topical vs. user relevance
— e.g., binary vs. multi-valued relevance

from Croft, Metzler,

Strohman._© Addison Wesley

Retrieval Model Overview

¢ Older models
— Boolean retrieval
— Overlap Measures
— Vector Space model
¢ Probabilistic Models
— BM25
— Language models
e Combining evidence

— Learning to Rank

from Croft, Metzler,

Strohman. © Addison Wesley

Test Corpora

TABLE 4.3 Comamon Test Corpora

Collction | NDoes | Nonw | Size (MB) | TormiDor | 0D Reldss
ADI 82 335

AIT 2109 14 2 400 =10,000
CACM 3204 | 64 2 245

15l 60 | 112 2 65

Crachield 1400 225 2 431

LISA sgrz | 3 3

Medkze 1033 30 1

HPL 11,45 3 3

OSHMED | 348566 | 106 400 250 16,140
Reutees 21578 | 672 = 131

TREC TA0,000 | 20D 2000 89.3543 » 100,000

slide from Raghavan, Schiitze, Larson

Standard Benchmarks

¢ National Institute of Standards +Testing (NIST)
— Has run large IR testbed for many years (TREC)

e Reuters and other benchmark sets used

o “Retrieval tasks” specified
— sometimes as queries

¢ Human experts mark, for each query and for each
doc, “Relevant” or “Not relevant”
— or at least for subset that some system returned

slide from Raghavan, Schiitze, Larson

Precision & Recall

Precision
tp Actual relevant docs
f:tpri‘*'rfrp,\) tn
Proportion of selected N \\'\/
items that are correct [p ’ tp | fn |
Recall +f>

System returned these
% of target items that

were selected

Precision
Precision-Recall curve \

Shows tradeoff Recall

Boolean Retrieval

e Advantages
— Results are predictable, relatively easy to explain
— Many different features can be incorporated

— Efficient processing since many documents can be
eliminated from search

¢ Disadvantages
— Effectiveness depends entirely on user
— Simple queries usually don’t work well
— Complex queries are difficult
— Brittle with user errors (eg misspelling)

from Croft, Metzler,

Strohman._© Addison Wesley

Interlude

¢ Better Models Coming Soon:
— Vector Space model

— Probabilistic Models
* BM25
e Language models

¢ Shared Issues — What to Index
— Punctuation
— Case Folding
— Stemming
— Stop Words
— Numbers
— Font size, titles, anchor text

Punctuation

e Ne’er: use language-specific, handcrafted “locale”
to normalize.

o State-of-the-art: break up hyphenated sequence.

e U.S.A. vs. USA - use locale.

e a.out

slide from Raghavan, Schiitze, Larson

Numbers
3/12/91
Mar. 12, 1991
55 B.C.
B-52
100.2.86.144

— Generally, don’t index as text
— Creation dates for docs

slide from Raghavan, Schiitze, Larson

Case folding
¢ Reduce all letters to lower case
¢ Exception: upper case in mid-sentence
— e.g., General Motors
— Fed vs. fed
— SAIL vs. sail

slide from Raghavan, Schiitze, Larson

Ranking search results

¢ Boolean queries give inclusion or exclusion of docs.

¢ Need to assess quality of results
— First attempt: OVERLAP between query and document

X NY]|

/N

Words in query Words in document

e What’s missing?

Vector Space Model

e Each term defines an axis
Even with stemming, may have 20,000+ dimensions

e Each doc is a vector of frequency values

Equivalentl
One “tf” component for each term q \
tf
¢ Treat query as just another document Terms |
How measure distance in this vector space?? | /
E=

syuawnioq

Information

Are all dimensions equivalent?

TF x IDF

w, =tf, *log(N/n,)

T, =term k in document D,
tf,, =frequency of term T, in document D,
idf, =inverse document frequency of termT, inC

idf, = |og(nﬁj

N =total number of documents in the collection C
n, =the number of documents in C that contain T,

slide from Raghavan, Schitze, Larson

BM25

Popular and effective ranking algorithm based
on binary independence model
— adds document and query term weights

) log (r;i+0.5)/(R—r;+0.5) (ka1 fi (k241)afs
i€Q 108 (n;—110.5)/(N—n;—R+ri10.5) ~ K+J; katafi

— N = number of doc, n; = num containing term /
— R, r; = encode relevance info (if avail, otherwise = 0)
— f;=freq of term | in doc; gf; = freq in doc
— ki, k2and K are parameters, values set empirically
* k, weights tf component as f; increases
* k, = weights query term weight

* Knormalizes
adapted from Croft, Metzler,

Strohman. © Addison Wesley

Simple Formulas

But How Process Efficiently?

Copyright © Weld 2002-2007 a2

Thinking about Efficiency

¢ Clock cycle: 4 GHz
— Typically completes 2 instructions / cycle
* ~10 cycles / instruction, but pipelining & parallel execution
— Thus: 8 billion instructions / sec
¢ Disk access: 1-10ms
— Depends on seek distance, published average is 5ms
— Thus perform 200 seeks / sec
— (Ignoring rotation and transfer times)

e Disk is 40 Million times slower !!!

Copyright © Weld 2002-2007 43

Retrieval

Document-term matrix

S A S nf

d; Wy Wi Wy oo Wy, [dY
d, Wo; Wopp Wy oo Wopn 1|dy|
dl Wip Wi ... WI] s Win ll‘dll
dn Wnp Wpp oo an s Wi llldn‘

wj; is the weight of term t; in document d;
Most w;/'s will be zero.

Copyright © Weld 2002-2007 44

Naive Retrieval

Consider query Q= (qy, 0y, -, 0j, -, d,), nf=1/][q].
How evaluate Q?
(i.e., compute the similarity between q and every document)?
Method 1: Compare Q with every doc.
Document data structure:

i ((ty, wiy), (8 Wip), -, (ty Wij)l oo (t Wi), 1/1di])
— Only terms with positive weights are kept.
— Terms are in alphabetic order.

Query data structure:
Q: ((t1r ql), (tzr Olz), cey (tjr qj), ey (tmr qm), 1/|q |)

Copyright © Weld 2002-2007 45

Observation

* Method 1 is not efficient

- Needs to access most non-zero entries in doc-term matrix.
* Solution: Use Index (Inverted File)

- Data structure to permit fast searching.
¢+ Like an Index in the back of a text book.

Key words --- page numbers.
- E.g, “Etzioni, 40, 55, 60-63, 89, 220"

- Lexicon
Occurrences

Copyright © Weld 2002-2007 47

Search Processing (Overview)

1. Lexicon search
— E.g.looking in index to find entry
2. Retrieval of occurrences
— Seeing where term occurs
3. Manipulation of occurrences
— Going to the right page

Copyright © Weld 2002-2007 48

Simple Index for One Document #te

oS Afile is a list of words by position

1 First entry is the word in position 1 (first word)

2 Entry 4562 is the word in position 4562 (4562" word)
30 Last entry is the last word

3 Aninverted file is a list of positions by word!

a (1, 4, 40)

entry (11, 20, 31)
file (2, 38)

list (5. 41) ,{ INVERTED FILE
position (9, 16, 26)
positions (44) . N
word (14, 19, 24, 29, 35, 45) aka “Index
words (7)
4562 (21, 27)

Copyright © Weld 2002-2007 49

Requirements for Search

¢ Need index structure
— Must handle multiple documents
— Must support phrase queries
— Must encode TF/IDF values
— Must minimize disk seeks & reads

a(1,4,40)

entry (11, 20, 31)

file (2, 38) dy | way Wop .o Wy,
list (5, 41) I

position (9, 16, 26) o
positions (44) dy Bwy Wy oWy,

Copyright © Weld 2002-2007 50

How Store Index?

Lexicon Occurrence List
a

aa

add +—| docID # pos,, ...

and

Oracle Database?

Unix File System?

The Solution

¢ Inverted Files for Multiple Documents
— Broken into Two Files

e Lexicon
— Hashtable on disk (one read)
— Nowadays: stored in main memory

e Occurrence List

) Lexicon Occurrence List
— Stored on Disk
— “Google Filesystem” :a
add — | docID # pos,, ...
and .
Copyright © Weld 2002-2007 53

Inverted Files for Multiple Documents

“jezebel” occurs

LEXICON

I DOCID OCCUR POS1 POS2 ... g:[mesm gncumentig,
imes in document 44,

'WORD NDOCS| PTR I 4times in document 56 . . .
jezebel 20 1 [3a] 6] 1] 118] 2087] 3922] 3981] 5002]
Jorene 1 s s i
oze 3 \|\ 56| 4| 5] 22| 134| 992
jezerit 1
jeziah 1 [s66] 3] 203] 245] 287]
jeziel 1
jeaah 1 | w2 OCCURENCE
jezoar 1 [o INDEX
jezrahliah 1 I
jezreel 39 ———[107

322] 354] 381 405
195| 248] 1897| 1951] 21902

42| 312] 802]

N
|
|
NEEIES
|
o

¢ One method. Alta Vista uses alternative
Copyright © Weld 2002-2007 54

Many Variations Possible

e Address space (flat, hierarchical)
¢ Record term-position information
* Precalculate TF-IDF info

e Stored header, font & tag info

e Compression strategies

Copyright © Weld 2002-2007 55

Other Features Stored in Index

¢ Page Rank o Page Classifiers (20+)
e Query word in color on page? = Spam
« #images on page — Adult
e # outlinks on page = Actor)
— Celebrity
¢ URL length _ Athlete

* Page edit recency - Product / review

— Tech company
— Church
— Homepage

Amit Singhai says Google uses over 200 such features
[NY Times 2008-06-03]

Using Inverted Files

Some data structures:

Lexicon: a hash table for all terms in the collection.

— Inverted file lists previously stored on disk.
— Now fit in main memory

Copyright © Weld 2002-2007 57

The Lexicon

e Grows Slowly (Heap's law)
— 0(nP) where n=text size; B is constant ~0.4 - 0.6
— E.g. for 1GB corpus, lexicon = 5Mb
— Can reduce with stemming (Porter algorithm)

¢ Store lexicon in file in lexicographic order

— Each entry points to loc in occurrence file
(aka inverted file list)

Copyright © Weld 2002-2007 58

Using Inverted Files

Several data structures:

2. Foreachtermt, create a list (occurrence file list)
that contains all document ids that have t;.

I(tj) ={ (dy le):
(dy -
o}

— d,is the document id number of the it" document.
— Weights come from freq of term in doc

— Only entries with non-zero weights are kept.

Copyright © Weld 2002-2007 59

More Elaborate Inverted File

Several data structures:
2. For each term t, create a list (occurrence file list)
that contains all document ids that have t;.
I(t) ={ (d,, freq, pos,, ... pos),
(d,, ...
.}

- d,is the document id number of the it" document.
— Weights come from freq of term in doc

— Only entries with non-zero weights are kept.

Copyright © Weld 2002-2007 60

Inverted files continued

More data structures:

3. Normalization factors of documents are pre-
computed and stored similarly to lexicon

nf[i] stores 1/[d;|.

Copyright © Weld 2002-2007 61

Retrieval Using Inverted Files
initialize all sim(q, d;) =0
for each term t;in g
find I(t) using the hash table
for each (d;, wy) in I(t)
sim(q, d;) += q; *w;
for each (relevant) document d,
sim(q, d;) = sim(q, d;) = nf[i]
sort documents in descending similarities
and display the top k to the user;

Copyright © Weld 2002-2007 62

Observations about Method 2
e If doc d doesn’t contain any term of query q,

then d won’t be considered when evaluating g.

¢ Only non-zero entries in the columns of the
document-term matrix which correspond to query
terms ... are used to evaluate the query.

e Computes the similarities of multiple documents
simultaneously (w.r.t. each query word)

Copyright © Weld 2002-2007 63

Efficiency versus Flexibility

e Storing computed document weights is good
for efficiency, but bad for flexibility.
— Recomputation needed if TF and IDF formulas
change and/or TF and DF information changes.
e Flexibility improved by storing raw TF, DF
information, but efficiency suffers.
e Acompromise
— Store pre-computed TF weights of documents.

— Use IDF weights with query term TF weights

instead of document term TF weights.
Copyright © Weld 2002-2007 66

How Inverted Files are Created

Crawler Repository | = [EZull - Forward
Index
ptrs

docs

Inverted s Sorted
can
File « | Index
List
Copyright © Weld 2002-2007 67

Creating Inverted Files @**

v
™~
®-m-(®)

Repository

* File containing all documents downloaded

« Each doc has unique 1D

« Ptr file maps from IDs to start of doc in repository

Copyright © Weld 2002-2007 68

Creating Inverted Files

0S

Forward Index S

did
enact
iulius
caesar

[/ PSINN N P
~NousrwNRET

was

Copyright © Weld 2002-2007 69

Creating Inverted Files mm

Furwam
ma fox
Term Doc# Term _|Doc #
' ambitious
dd be
enact brutus

julus brutus
caesar capitol

|
vas
Kiled
i

Sorted Index g

caesar
=P did
enaot
hath
|
i

H
&
H
Bl e o e e e

(positional info as well)

Copyright © Weld 2002-2007 70

Creating Inverted Files

Lexicon

docs

B - (Sored
<« Index

-
s i
o

an [BS

Forward
Index

Compression

¢ What Should We Compress?
— Repository
— Lexicon
— Inv Index

¢ What properties do we want?

Compression ratio

Copyright © Weld 2002-2007

DOCID OCCUR POS1 POS2
WORD | NDOCS| PTR
jezebel 20 1 —[3] 8] 1] 118] 2087] 3922] 3981] 5002
[aa] 3] 215] 2291] 3010]
Jezer 3 [56] 4| 5] 22| 134] 997]
jezerit 1
jeziah 1 [s66] 3] 203] 245] 287]
jeziel 1 - -
jeztin : Inverted File List
jezoar 1
jezrahliah 1
jezreel 39 -1

— Compression speed

— Decompression speed

Memory requirements

— Pattern matching on compressed text
— Random access

Copyright © Weld 2002-2007 77

Inverted File Compression

Each inverted list has the form <f, ;d,, d,, d;, ..., dﬂ >

A naive representation results in a storage overhead of (f + n) * [logN]

This can also be storedas < f;;d,,d,—d,,...,d, —d; ;>

Each difference is called a d-gap. Since Z(d —gaps)<N,

each pointer requires fewer than [logN bits.

Trick is encoding since worst case

otherwise

Assume d-gap representation for the rest of the talk, unless stated

Slides adapted from Tapas Kanungo and David Mount, Univ Maryland
Copyright © Weld 2002-2007

Text Compression

Two classes of text compression methods
e Symbolwise (or statistical) methods

— Estimate probabilities of symbols - modeling step

— Code one symbol at a time - coding step

— Use shorter code for the most likely symbol

— Usually based on either arithmetic or Huffman coding
¢ Dictionary methods

— Replace fragments of text with a single code word

— Typically an index to an entry in the dictionary.

* eg: Ziv-Lempel coding: replaces strings of characters with a pointer to a
previous occurrence of the string.

— No probability estimates needed

m) Symbolwise methods are more suited for coding d-gaps

Copyright © Weld 2002-2007 79

