
Yoon’s Whiteboard:  
Applying Mobile and Internet Technology to Developing Regions 

Yoon-Sung Hong 
Matthew Lauren 
Ting-Yen Wang 

CSE454, Fall 2010-2011 
 
 
 
 
 
 
 

Introduction and Goals 

In developing regions, the Internet infrastructure is lacking, but the mobile infrastructure is 
quite well established. The Open-Data-Kit (ODK) research group at UW found that SMS 
transmission time in Tanzania is faster than that in Seattle. ICTD and Mobile research 
communities have been investigating how to utilize the mobile infrastructure in developing 
regions to aid healthcare, economical, and social problems. The research communities and 
ODK group inspired our group to design and develop an information system that fits within 
the developing region context by taking advantage of the established mobile infrastructure. 
Particularly in this class, our group focused on improving the supply chain of the farming 
industry in developing countries by providing a way for farmers to reach out a broader 
potential consumer base with less middlemen through mobile and Internet technologies. 
We believe that our system can help farmers make fair deals and posses a larger portion of 
the profits by slimming down the supply chain. Designing such a system requires adopting 
a collection of technologies. We intended to learn how to choose the appropriate 
technologies for the system and create a harmonious and effective system. Also, due to the 
heterogeneous nature of our system design, it was our goal to figure out the most effective 
communication protocols between the components of the system. On the implementation 
aspect, we intended to learn cloud computing platform and Hadoop. Finally, we planned 
user studies to verify that our implementation is usable by people with diverse technical 
backgrounds. We believe that these user studies can give us some ideas as to how people in 
developing regions will accept our implementation.     

 



System Design and Algorithm 

Overall Architecture of the System 
The following sections will describe the implementation of each of the components of our 
system, Yoon’s Whiteboard.  Figure 1 provides a high-level overview of each of the 
components and how they interact with each other. 
 

 
Figure 1: High-level view depicting overall design of Yoon’s Whiteboard 

Components 

ODK Tables 
ODK Tables is an application similar to Excel built on the Android mobile platform to help 

manage a collection of SMS messages (see Figure 2 for screen shot). You can update and 

retrieve information to the application running on Android mobile device through SMS.  

 
Figure 2: Screen shot of ODK Tables 

ODK Collect 
ODK Collect renders an Xform into as sequence of input prompts that apply form logic, 
entry constraints, and repeating sub-structures (see Figure 3 for screen shot). Users work 



through the prompts and save the submission as completed or partially completed 
(allowing later revision). ODK supports GPS and the various methods of input such as 
video, audio, and photos on Android mobile platforms. 
 

 

Figure 3: Screen shot of ODK Collect 

ODK Aggregate 
ODK Aggregate is the server pair for ODK Collect. ODK Collect sends data in JSON format and 

Aggregate instances that run on the Google Engine forward the data to configured web servers in 

JSON format.    

 

Website 
Yoon‟s Whiteboard is similar to Craigslist, but designed for developing regions. Users can sell 

and buy products through the website. Users can make postings to our website either through 

web browsers or ODK Collect on a mobile device. The website is built with the LAMP 

architecture where we use Ubuntu Linux as our platform, Apache as our web server, MySQL as 

our database engine, and PHP as our back-end and front-end programming language.  The site is 

housed on Amazon Web Services (AWS) on a small EC2 instance – a small EC2 instance is 

defined as having 1 virtual core with 1 EC2 Compute Unit (equivalent to 1GHz), 1.7GB of 

memory, 160GB of instance storage, a 32-bit platform, and moderate I/O performance. 

 

 

 

 

 

 

 

Continues on Next Page Regarding Website Features 

 



1. Main Page

 
Figure 4: Main Page of Yoon’s Whiteboard 

 

Location/Language 

Our service is community oriented. Capturing the location of the user is essential in many 

parts of the website, including search results and suggestions.  Capturing the user‟s location 

is performed by detecting the user‟s IP address and then translating that IP into a latitude, 

longitude and region code – such as city, state, country; this translation of IP to location is 

done through a library call that we implemented that requests the mappings from an online 

database called IPInfoDB.  We prominently display the user‟s region code to the user in the 

header (see Figure 4) and utilize the latitude and longitude to help user‟s identify nearby 

products in their community.  In addition to location, we designed our web service to also 

serve many regions. Capturing and providing the user‟s appropriate language are essential for 

the future implementations of the system.  

 

Search Bar 

Search bar is the easiest way to perform general purpose searches on the website.  As Figure 

4 demonstrates, we tried to make the search bar easy to find by adding color to that portion of 

the website.  Figure 4 also demonstrates our desire for ease when searching by keeping the 

interface simple.  More details concerning how the search bar works are below in “Search.” 

 

 

 



Menu  

 Merchandise  

Provides quick links to popular categories such as corn and fish (see Figure 4). By 

clicking the links, users can see all listings relevant to the category. The “Merchandise” 

aspect of our website has been fully implemented. 

 Jobs 

A community oriented website can be a very good space to seek or advertise jobs. This is 

especially true in developing regions, as most jobs in this context are hired locally.  Note 

that the “Jobs” portion of the website is not implemented since our focus in this class was 

to improve the supply chain of the farming industry. This section exists to show the 

potential extensibilities of the web service. 

 Slider of Suggested Products 
On the front page, customers are immediately presented with items that may potentially 

interest them (see Figure 4).  Our focus on community and location is demonstrated here 

in that the current design lists the top seven closest items to the user.  As mentioned 

above, the user‟s location is detected by translating the user‟s IP address into a latitude 

and longitude; as we will discuss in more detail in the “Making a New Posting” section, 

all items are also tagged with latitude and longitude attributes; this item and user location 

information allows us to identify those items closest to the user, which may provide the 

greatest allure to the customer.  When the website begins to receive more traffic and we 

are able to conduct some customer profiling, the suggestions could be expanded to 

include the parameter of customer buying habits. 

 

2. Admin and Access Control 
To fully utilize our website, users need to login. We have fully implemented user 

authentication system in a very secure way using encryption techniques such as MD5 + Salt. 

User studies shows that more than 90% of participants had no trouble signing up, logging in 

and managing their accounts on our website. 

 

 

 

 

 

 

 

 

 

 

Continues on Next Page Regarding Website Features 

 

 

 

 

 

 

 



3. Search  

 
Figure 5: Search Results Shown with Google Map 

 

The community orientation of our service led us to invest a great deal of effort into the 

design of a unique way of searching that is informed by the customer‟s location and his or 

her proximity from desired products. 

 

      Listing 

After the user types in a search string depicting products the user is interested in, we provide 

a list of top product hits that are each accompanied with item details like the seller name, 

price, description, and the distance between the product and the user (see Figure 5).  Like the 

main page‟s “Slider of Suggested Products,” one of the most influential parameters of search 

is this distance parameter, as our original goal was to somehow sort our search results based 

on distance.  However, differing from the product slider and its sole focus on distance values, 

search has to deal with the complexity of incorporating distance into the existing methods of 

searching for products through text search.  We accomplished this goal of mixing distance 

with text search by utilizing a number of tools and algorithms, one of the most significant of 

which is MySQL‟s natural language full-text search capability with the FULLTEXT index.  

First, after the user enters a search string, we utilize MySQL‟s FULLTEXT index to parse 

the string and compute the relevance score of each product against the search string – the 

scores are floating point numbers from zero on up, where a zero means the product has zero 

relevance to the search string.  The relevancy scores are computed similarly to the Naïve 

Bayes algorithm in that the number of occurrences of a word in the database signifies its 



significance towards the search string – the greater the number of occurrences, the lower the 

significance. In general, the greater the number of „significant‟ words in the product listing 

that matches the search string words, the greater the relevancy score.  The FULLTEXT index 

also incorporates the filtering of stopwords, giving them zero semantic value. We return 

those products with relevancy greater than zero as our initial list of search results. 

 

In addition to those products that have been calculated as having greater than zero relevancy, 

we also add to the search results those products where the prefix matches the search string, 

since people often search for items by typing the first few characters of the product string. An 

example of a prefix search is providing “Salm” as the search string in order to find the 

product “Salmon Fillets.”  Since prefix searching can use non-words, this can often help the 

user find items that would have resulted in zero relevancy through the FULLTEXT index. 

 

Once we have our list of search results, we need to re-score each of the products so as to 

create a listing order to present to the user.  It is here that we need to start incorporating 

location and distance into the search results.  As we will describe in the “Make a New 

Posting” section below, each product is tagged with a latitude and longitude describing where 

it is located.  As mentioned above in the “Main Page” section, we also tag the customer‟s 

location (latitude and longitude) through the customer‟s IP address.  Thus, with the latitude 

and longitude information for products and customer, we can utilize the Haversine formula to 

calculate the distance between the customer and each of the products in our search results – 

the Haversine formula calculates the distance in kilometers between two points on a globe 

and is sometimes known as the “as the crow flies” distance.   

 

Finally, we add 0.04 to each of the relevancy scores and divide each of the product distances 

by their updated relevancy scores to finally get our listing-order scores (see Figure 6) – those 

products with lower listing-order scores are listed higher in the search results.  We add 0.04 

to each of the relevancy scores, since many prefix search results have a relevancy score of 

zero; the 0.04 padding provides these prefix search results with a 1 km to 25 km ratio such 

that if the product is close by and only 1 km away from the user, then the penalty for having 

a zero relevancy is only a factor of 25 km.   

 

Listing Order Score = (distance between product and user) / (relevancy score + 0.04) 
 

Fig 6. Search listing order score equation 

 

Map 

In addition to ordering each of the products with respect to both full-text natural language 

relevancy and distance from the user, we also reinforce the community-centered focus of 

search by displaying a local map of the products that are close to the user (see Figure 5).  The 

map is generated with the Google Maps API.  The map is centered on the user‟s location, as 

identified by the user‟s IP address, and the products are marked on the map with annotated 

markers placed on the map (“A”, “B”, “C”, etc).  Each of the search result listings is prefixed 

with an equivalent annotated marker, making it easy to associate the markers on the map with 

the associated search result listings.    

 

 



4. Item Page & Comments 

 
Figure 7: Example of Item Page for Merchandise Category 

 

The item page is designed to give the item description and provide users with a space to hold 

conversations about a specific item (see Figure 7).  

 

The Merchandise item page has three sections:  

 Item Details – price, quantity and description about the item 

 Location – location of the seller of the item 

 Comments – space for interaction between the seller and potential buyers 

 
 

 

 

 

Continues on Next Page Regarding Website Features 



5. Making a New Posting

 
Figure 8: Process of Making a New Posting 

 
After a user study, we received feedback on our “Making a New Posting” page. The majority 

of the complaints were about giving users too many input boxes to fill out on a page. To 

resolve this problem, we split the new posting page in to two and placed a status box to help 

users track and be aware of where they are in the process (see Figure 8).  On the first page, as 

shown in Figure 8, the user is asked to provide an “Item Description” for the product they are 

posting.  Example input fields are the “Title” of the product, “Price” per unit of the product, 

and the “Quantity” available.  The second page requests the user to provide the location of 

the product and, if available, an image of the product.  The location is simply a postal 

address.  Once the user has completed the second page, we look up and tag the product with 

its latitude and longitude position and store all of the data into the product database.  The 

lookup of latitude and longitude is performed with the aid of the Google Maps API, 

specifically its geocoding functionality, which takes an input postal address and outputs the 

latitude and longitude of the address. 

 

6. Mobile Page 
The mobile page provides a way to access our website from a mobile device. Currently, we 

support a “My Posting” interface where users can keep track of their items along with their 

associated comments.  We believe that mobility can be very useful in developing regions. For 

the future, we will add more useful features to the mobile version of the website. 



Use Case 

We believe that showing how a farmer in a developing region can utilize our service to sell a 

product will allow us to show the full spectrum of our project. 

Farmer 
Farmers are required to have a cell phone that has SMS capability. Using a structured SMS 

format, farmers can inform middlemen about the product information such as price and quantity. 

 

Farmer -> Middlemen 
Farmers can inform the middlemen about the product information using the following 

structured SMS message. This SMS schema is used by the ChildCount+ project from 

Columbia University that is actually deployed in Africa to aid healthcare information 

operations.   

  

The following is an example SMS message for selling 10 units of corn for $10 per unit by 

YoonSung: 

@Sales +type Corn +name YoonSung +qty 10 +price 10 

Middlemen  
Middlemen are required to have an Android mobile phone with the ODK Tables and ODK 

Collect applications installed.  

 

Farmer -> Middlemen 
ODK Tables takes all the structured SMS messages with selling requests and saves them 

in the application‟s database.  Figure 9 demonstrates selling request from farmers Matt, 

Ting-Yen, and YoonSung, which are being stored and viewed by ODK Tables.  

 
Figure 9: Example of farmers providing product requests to a middleman 

Middlemen -> Server(ODK Aggregate) 
The middlemen place postings on the website for the farmers using ODK Collect 

(example interface in Figure 10). Middlemen have a choice to either make separate 

postings for each farmer or collective postings. For instance, the middleman can be a 



village leader who is responsible for collecting products from each household and sell 

them together. In many farming villages in developing countries, village leaders often 

carry the responsibility of selling an entire village‟s farm produce.  

 

Figure 10: Example of ODK Collect setting up a posting 

Server (ODK Aggregate) 
ODK Aggregate, sitting on the Google App Engine, forwards the data sent by ODK Collect to a 

configured IP address using HTTP POST. 

Yoon’s Whiteboard 
The forwarded data in JSON format is parsed and registered in the database. The item posting is 

immediately available through our website. 

Consumers 
Consumers can find items that have been posted either through using the search tool or by 
browsing through the Categories listed on the left side of the page.  Figure 11 provides an 
example of viewing Corn items under the Merchandise category. 

 
Figure 11: Example list of items displayed after clicking on the “Corn” category 



 
After the customer has logged onto the site, they will be able to see a box that allows them 
to post a comment about an item. Their own comments will show up shaded yellow.  Figure 
12 demonstrates how the logged in user, yoonsung, sees all of his comments shaded yellow 
and all of the other comments shaded vanilla. 

 
Figure 12: Example comments for an item 

 
The middlemen can keep track of their postings with the My Postings page on the account 
management part of the website.   In Figure 13, the logged in user (or middleman), 
yoonsung, has navigated to the My Postings link and is viewing all of the postings that he 
has made. 



 
Figure 13: Example of viewing one’s own postings 

 
Also, the middlemen can use the mobile website to view their items from their Android 
phone.  Figure 14 provides an example of what an Android phone’s screen would actually 
show when it tries to view the details of a particular item – in this case, “Corn sales at uw.” 
You can also see in the figure that at this point, the middleman can see that someone is 
interested in his or her item and they are able to get in contact with the potential customer. 
 

 
Figure 14: Example of viewing an item through the mobile portion of the website 



Experiments 

Performance Testing 
In order to evaluate our ability to go live with our service, we performed a simple 
performance test to see the level of traffic our current setup could feasibly handle.  Recall 
that our website is being housed on Amazon’s AWS in a small EC2 instance.  The approach 
that we took to evaluate our performance was to utilize Amazon’s Elastic MapReduce, 
which is built on Apache’s Hadoop.  The mapper function represented a simulated user 
written in Python and timed how long it took for the simulated user to fetch the home page, 
perform a search, and fetch the search results.    The reducer function called Hadoop’s 
aggregate library and performed a count of each unique response time.  We measured our 
website’s traffic performance by setting up different numbers of concurrent simulated 
users, or mappers, and analyzing the resulting list of response times. 
 
At first, in order to reduce our usage of our Amazon AWS credits, we started mapping to 
small EC2 instances – again, a small EC2 instance is defined as having 1 virtual core with 1 

EC2 Compute Unit (equivalent to 1GHz), 1.7GB of memory, 160GB of instance storage, a 32-bit 

platform, and moderate I/O performance. Due to Amazon rules, we were allowed up to 19 

instances – any more required a special request to Amazon.  On these small EC2 instances, we 

simulated 1, 3, 5, 10, 15, 25, 50, 75, 100, 150, and 200 users.  From Figure 15, we can see that 

we can acceptably handle around 10 users at a time, after which the response time is beyond 

acceptable parameters.  This actually makes sense since our website is housed on a small EC2 

instance, which means we not only have limited resources and limited I/O, but we are also 

sharing those limited resources in the cloud.  When we decide to make our services available to 

the public, we will have to provision more server instances and, perhaps, load balance those 

instances.   

 
Figure 15: Graph representing average response time in seconds with respect to the number of users from 1 to 

25 users issued to Elastic MapReduce with Small EC2 instances 

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

A
v

e
 R

e
sp

o
n

se
 T

im
e

 (
se

c)

Number of Users

Ave Resp Time vs. Num of Users



 
In Figure 16, we can see that the problem gets worse and worse as we add more users into 
the test.  The apparent leveling out of the graph after 100 users may be a saturation point 
in AWS, such that Amazon is probably provisioning more resources after this point.  The 
data point at 150 users is also interesting in that we get a sudden improvement in 
performance; this was due to the fact that we ran that particular test at 3AM in the morning 
when resources in the cloud more freely available.   

 
Figure 16: Graph representing average response time in seconds with respect to the number of users from 1 to 

200 users issued to Hadoop with Small EC2 instances 

 
After studying the results some more, however, we started to wonder what should happen 
beyond 19 users and beyond the 19 cores that were available to us.  Could it be that beyond 
19 users, some of the simulated users were being blocked from starting, providing 
artificially faster results?  In other words, with only 19 cores, if we simulated 100 users, 
will all 100 users start at around the same time and accurately simulate web server 
resource contention or will the simulated users block each other such that we are in 
essence just running about 19 users at a time in serial? If this is true, then Figures 2 and 3 
are actually optimistic and our performance is even worse than depicted.  In order to 
analyze the validity of our concerns, we changed from provisioning small EC2 instances to 
High-CPU Extra Large instances for our Elastic MapReduce sessions.  Each of these 
instances contained 8 virtual cores at 2.5 EC2 Compute Units each, 7GB of memory, 1690GB 
of storage, a 64-bit platform, and high I/O performance.  Of significance to us was the 
upgrade from 1 core to 8 cores per instance.  Due to an apparent problem with AWS, we 
were only allowed up to 15 extra large instances, but that still provided us with up to 120 
available cores with which we tested 1, 3, 5, 10, 15, 25, 50, 75, 100, 120, and 150 users.  
From Figure 17, we can see that our concerns were validated – our response times were 
even worse when using the extra large instances and all of the simulated users are allowed 
to run at around the same time.  Note that the 150 users data point may have dipped down 
because of that fact that 150 users is beyond the scope of our 120 cores and we may be 

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250

A
v

e
 R

e
sp

o
n

se
 T

im
e

 (
s)

Number of Users

Ave Resp Time vs. Num of Users



blocking users again.  Also notice that the extra large instance exceed the small instances in 
response time only after around 50 users; this may be because of the greater capabilities of 
the extra large instances (they are over twice as fast as the small instances with greater I/O 
performance) that are eventually overcome by the number of concurrent users and the 
immensity of requests being handled by the website.  
 
In conclusion, these results demonstrate to us the need to provision additional server 
capacity before we can offer our website to the public.  No matter what type of EC2 
instance we used, our Hadoop study clearly shows us that we are currently unable to 
service any sufficient number of users at the same time. 
 

 
Figure 17: Graph representing average response time in seconds with respect to the number of users from 1 to 

150 users issued to Hadoop with both Extra Large High-CPU EC2 instances (“Large”) and Small EC2 instances 
(“Small”) 

User Study 
The goal of the user study was to test how easily a person can come to the website portion 
of the project and, with no instruction, use all of the features. We decided to limit the scope 
of the study to the web portion because of limited time and resources and because the 
mobile portion requires the user to install an app, register, and possibly get some training 
in its use. The website on the other hand is made to be used by anyone interested in 
interacting with suppliers, so it must be intuitive and easy to use, which is what this study 
is focused on. 

-10

0

10

20

30

40

50

60

70

80

0 50 100 150 200

A
v

e
 R

e
sp

o
n

se
 T

im
e

 (
s)

Number of Users

Ave Resp Time vs. Num of Users

Large

Small



Test 
The study consisted of giving seven people of varying technical backgrounds five tasks to 
complete. The data gathered was an observation on how the user completed the task 
compared to how we designed the tasks to be completed. We encouraged the user’s to put 
the same amount of effort in completing the task that they would put in using any other 
commercial site, such as give up when it just is not worth it. 
 
The specific tasks and our expected paths to completion are as follows: 

 Sign Up and then Sign In 
o Click on Sign Up button 
o Fill out required fields 
o Click Submit – See Signup Successful Page 
o Click Login Button 
o Input Information – Click Submit 
o See the “Welcome username” at top of screen 

 Find the highest cost corn item by browsing for it 
o Select Merchandise Sidebar Item 
o Click on the Corn item 
o Scroll through listed items, scanning the price field. 

 View details about an item with the phrase “img” in it, where a single matching item 
exists. 

o Type in “img” in the search bar  
o Click on result in search results 
o View Item 

 Comment on an item 
o Scroll to bottom of page 
o Type in what you want to say in the “Leave a Comment” box 
o Click Submit 
o Scroll down to comments section again, view your comment. 

 Post an Item 
o Click on “New Posting” button at top of page. 
o Fill in required fields. 
o Click Submit. 
o Fill in more fields. 
o Click Submit again. 
o View Item 

Results 
The results of this user study provided very good insight into what we had been 
overlooking, and what we needed to focus on. In addition to recording task completion, we 
also recorded any comments the user made while performing the task.  The following 
results table shows the completion progress of each user that attempted a scenario with 
each row indicating a specific user (see Figure 18). Green means the person completed the 
task in an acceptable timeframe and in an expected way. Yellow means the user completed 



the task, but either not quickly, or not in the expected manner. Red means the user was 
unable to complete the task. The “Fine” entry signifies that the user completed the task as 
expected with no significant comments.  As Figure 19 evidences, our original 
implementation suffered from a number of human interaction issues, as opposed to bugs, 
as the majority of the comments dealt with understanding or working with our interfaces:  
for signing up for an account, one user had trouble finding the button to perform the action; 
for browsing through a category, a couple of users found the text to be either confusing or 
unattractive; for searching for an item, a couple of users had trouble interpreting the 
proper usage of the tool; for commenting on an item, a couple of users could not intuitively 
interpret how the comments were organized; for posting a new item, a number of users did 
not seem to understand what all of the fields meant.   While Figure 18 provides very useful 
qualitative results of the user study, Figure 19 attempts to provide some more quantitative 
results.  The bar graphs in Figure 19 provide us with the additional information that our 
original implementation performed pretty well with the simpler user tasks of the website, 
like signing up for a user account and searching for an item.  However, the harder user 
tasks, like posting a new item, desperately needed to be looked at and made easier for 
users. 
 

User Study Results 
 
Sign In Browse Search Comment Post Other 

Comments 
Fine 
 
  

Fine Fine Comment at top 
not directly 
intuitive 

Type to Category not 
intuitive, language, 
type, id and name not 
showing, listing 
disappeared, very 
confusing 

 

Tried first in 
IE, didn’t 
work as 
expected. 

Noticed that the 
Farm/Tech 
pages are not 
complete. 

Mistyped phrase, 
no results 
returned was 
confusing. 

Got errors when 
not logged in. 

Gave up after first 
submit. 

 

Fine Merchandise 
Listing very 
confusing. 

Fine Fine Too unsure about what 
to put in all the fields 
on the first page. 

“Looks better 
with javascript 
disabled” 

Fine List was too fat 
and wordy to 
browse. 

Fine Fine Can’t find category 
field. Wondering why 
it’s not all on a single 
page.  

 

Looks odd in 
Chrome. 

Fine Looked around for 
an advanced 
search option, to 
search only a 
specific part of the 
item 

Looked at top of 
comments list 
to post one, 
then scrolled 
down. 

Fine  

Fine Fine Fine Fine Fine “Intuitive but too 
ugly to use”. 

Looked 
awhile for 
Sign Up 
button. 

Took longer than 
expected, 
eventually made 
it. 

Gave up at search 
page 

Already given 
up 

Already given up “Shouldn’t have 
asked me, I’m 
not good with 
computers.” 

Figure 18: Qualitative results of the user study 
 



User Success / Difficulty / Failure Ratios 

 

 

 
 
 
 
 

 
 
 

Figure 19: Quantitative results of the user study 

Improvements 
From these testing results, it was clear to us that we had been making too many 
assumptions about how people use web pages and that we needed to devote a lot more 
time than we had left into look, layout and workflow. Specifically, we got a lot of feedback 
on the look of the site – that it was just too plain and needed to be more eye-catching. This 
was one area that we tried to remedy. We did a pass over the look and layout of the site, 
improving proportions, adding colors, and making the different pieces of the site stand out 
from each other in order to give the eye quick things to latch onto.  Other improvements we 
implemented are to highlight one’s own comments, making one’s comments more visible, 
and making the steps for posting an item more apparent and logical. 
 
Going forward, we will be continuing to make improvements to the site keeping this 
feedback in mind. One specific change that we did not have time to do,  would be give all 
input fields descriptions, which would reduce confusion and give the users confidence in 
what they are doing. We would also do further, more in depth, iterative user tests to 
determine further areas of the website that needs work. Finally, we would eventually like 
to provide a brief tutorial on how to do the common tasks on our website, since the users 
we tested told us it would be very helpful. 
 
 
 
 
 



Surprises and Lessons Learned 

Surprises 
Throughout the course of the project, there were a number of surprises – things that ended 
up being harder than we had anticipated.  Perhaps the biggest surprise was browser 
compliance.  We did most of our work with Mozilla Firefox and used that browser as our 
baseline.  However, we discovered more and more that adapting the site to work on other 
browsers like Chrome or Internet Explorer was a major challenge sometimes seemed like a 
project unto itself.  Developing our search system to integrate location into the standard 
text search was another challenge that ended up taking most of the quarter to solve.  We 
always planned to make location the central aspect of search, but we could not figure out to 
properly integrate full-text searching; more specifically, the problem that we were facing 
was determining how to properly score text matches and then how to adjust that score 
based on location.   Indeed, for much of the quarter, we were taking the results from a basic 
prefix search and simply ordering the search results by distance from the user.  Professor 
Weld advised us that databases like Lucene sometimes came with a text search scoring 
algorithms, which gave us hope for a solution.  We continued to look into MySQL for 
something similar and found the FULLTEXT index that helped to solve our problem.   
 
As opposed to implementation issues, a tool that surprised us was using Hadoop with 
Elastic MapReduce.  Just to get it set up was a long process of not just signing up for the 
Elastic MapReduce service, but also signing up for Amazon S3, which MapReduce uses to 
store mapper functions, input files, and output files.  Then, since only the owner of the AWS 
account could use the MapReduce and S3 GUI consoles, we had to set up the MapReduce 
command-line interface (CLI) and an S3 command line tool so that everyone in the group 
could use Elastic MapReduce.  The MapReduce CLI did not work at first, as it required a 
specific version of Ruby that we were not using – we had installed the latest version of 
Ruby, which had deprecated syntax that the MapReduce CLI was utilizing.  Finally, we could 
get started with setting up our Elastic MapReduce session, which involved learning the 
mapper syntax, the aggregate library, and the MapReduce and S3 command-line syntax.  
We also had to learn how to translate the sometimes cryptic status messages and log files 
since we ran into a number of errors before we were able to get some sessions started – the 
most difficult of the errors being the undocumented limit of 15 high-CPU extra large 
instances, even though the documentation states that we could provision up to 19 
instances as was the case with the small instances.  A final surprise that we would have 
never expected was the difficulty in implementing image input for product postings, which 
can be done with both the web site posting process and with the smart phone.  Basically, 
we had a lot of difficulty figuring out how to first correctly encode and store the images and 
then decode and display the stored images.   



Lessons Learned 
In doing the capstone project for CSE454, we received a number of lessons learned – some 
of them being lessons of things that worked well and should be carried forward and other 
being lessons that did not work well and need to be addressed.  One of the most significant 
things that helped us in the project was incrementally setting milestones and meeting those 
milestones as a team.  This kept us moving along step by step, both preventing us from 
having to experience any major last minute hurdles and allowing us to accomplish most of 
the goals we set out to accomplish at the beginning of the project.  One of those milestones 
was arguably one the most beneficial actions that we took during the course of the project: 
identifying the design, programming languages, and technologies early in the project.  
These decisions did not come easily nor quickly and we have to spend many hours in team 
meeting sorting through all of the options and debating the benefits and drawbacks of each 
option.  By the end of this milestone, we had identified LAMP are our architecture 
(therefore, PHP would be our language), chosen CodeIgniter as our coding framework 
(which uses the MVC framework), decided upon AWS as our platform, and had initial 
designs of our database schema and code.  Putting the time and effort into these initial 
decisions saved us countless hours by preventing major design changes midway through 
the project.  Choosing CodeIgniter and the MVC framework was also something that 
worked really well for us.  The framework helped to neatly divide up the major pieces of 
the system.  This allowed us to more easily visualize how to organize our code, but it also 
helped us to work well concurrently since the framework helped us to know exactly how 
everyone’s pieces interacted and fit in the system. Using AWS also turned out to a good 
choice for the project.  AWS turned out to much easier to set up than we anticipated, 
provided virtually 100% uptime from what we could tell, and placed a number of handy 
tools at our fingertips, such as MapReduce (though it was hard to set up, it was nice to have 
a complete Hadoop setup on hand).  Finally, like our use of CodeIgniter and AWS, a good 
lesson that we learned from doing this project was that using the right tools can 
tremendously aid our development.  For example, we could not have come close to the level 
of success that we achieved with location identification without the help of tools like 
IPInfoDB and Google API’s geocoding.  
 
As opposed to many lessons concerning things that worked really well for us, there were 
also lessons concerning things that did not work so well and need to be adjusted or fixed.  
One thing that was definitely a challenge and something to keep in mind as we move 
forward was the lack of web user interface (UI) experience in our group.  We originally had 
a UI focal at the beginning of the project, but the focal had to drop out of the class a couple 
of weeks into the quarter.  This made UI tasks fairly time consuming as most of us were 
learning how to do UI while we were developing.  If we could do the project again, we 
would have looked for someone with some UI experience to join the group and will 
definitely be an item to address as we continue to develop the website.  Another painful 
lesson to take away from the project was the lack of test planning at the beginning of the 
project, which led to the lack of any form of a test harness.  Throughout the project, we just 
naively performed manual testing whenever we made a change; however, as the project got 
more and more complex, this manual testing not only took more and more time, but was 
only prone to missing more and more errors.  Similar to the lack of a test harness, we also 



mistakenly left out the creation of test environments at the beginning of the project.  This 
caused us to often step on each other’s code as we developed straight on the production 
code. Most of us eventually developed test environments, but this is something that we will 
have to remember to keep on addressing.  Finally, although obvious, late changes never 
worked well.  Although we put in a lot of time and effort into foundational design and 
decisions at the beginning of the project, which really did help to avoid major changes, we 
still experienced a couple of small changes that still cost of precious time.  For example, we 
experienced a deprecation project in the middle of the project that took about two four full 
days to complete.  The lesson is that we need to not only continue to devote adequate time 
at the beginning of projects for design and making key decision, but we need to keep 
getting better at making these decisions so as to avoid late changes more and more.  
 

Conclusion 

Our group is very satisfied with the results of the project. We managed to achieve all the goals 

we proposed at the beginning of the course. We believe that we have completed the groundwork 

required to extend the project further.  We ask advice from academia and experienced software 

engineers to design and implement a sustainable system. For the immediate future, we would like 

to perform user studies on local farmers in Seattle to see if the farmers find incentives to use the 

system. Although the system is designed for developing regions, we believe that our system can 

also be useful in the developed countries context. Once the web service stabilizes, we will like to 

expand our service to developing regions and perform full stack investigations from mobile to 

web. It is our plan to work closely with academia with interests in this context to get advice and 

find the first appropriate region to deploy the service.   

 

 

Appendix 

Division of Labor 
Yoon-Sung Hong carried the vision of the project and led the team, especially in terms of 
the design and architecture of the system.  He was also in charge of the mobile portions of 
the system, which included developing the cell phone to smart phone interface, the smart 
phone application, and the website’s mobile interfaces.  Yoon-Sung was also in charge of 
the admin system of the web site, which included the login system 
 
Matthew Lauren was in charge of user interface (UI) design and development, which 
included designing the overall CSS and page layout.  He was also in charge of the customer 
interaction portions of the web site, which included the product viewing and commenting 
systems.  Lastly, Matthew also ran the user studies. 
 
Ting-Yen Wang was in charge of developing the database schema and maintaining the 
database.  He was in charge of designing the website’s search system, which included 



working on the IP to location library, the geocoding tools, and the addition of location into 
natural language full-text search.  Lastly, Ting-Yen was in charge of the performance 
testing.   
 

Overall, the group dynamics were very positive.  We met about twice a week to discuss design 

decisions, past week accomplishments, and tasks for the upcoming week.  As expected, we 

would sometimes have differences of opinion, but these were always a pleasant times of 

teamwork to get at the best solution and never battles over individual stances. Outside of 

meetings, we communicated on a consistent basis by email, instant messaging, or phone.  One of 

the major aspects of our group was that we regularly set milestones and kept each other 

accountable to those milestones. By the end of the project, we all felt that it was a good group 

experience that we would gladly repeat. 

External Code 
 CodeIgniter:  PHP framework that both helped us to use the Model-View-Controller 

framework and provided useful libraries and function for web development. 
 ODK : A series of Android applications that help to collect SMS messages, display the 

messages as a form that can be further manipulated, and then submit the form to a 
web server.   

 IPInfoDB: Online database that provide mappings from IP addresses to location 
information, such as latitude, longitude, and region codes (such as city, state, and 
country) 

 JQuery: Provided a set of JavaScript functionality that helped to simplify some of the 
more complex look-and-feel items of the website.  For example, the spinner that 
appears after posting an item was done with JQuery and the confirmation box that 
appears after clicking on the “Remove Item” button was done with JQuery. 

 JQueryUI: Provided some UI plug-ins to help with UI design.  We largely utilized the 
buttons library to improve the look-and-feel of our buttons. 

 Anthing Slider: JQuery plug-in that helped to implement the “slider of suggested 
products.” 

 According Content: JQuery plug-in that helped to implement the left-hand-side 
menu bar. 

 Google Code API:  The Google Map, map markers, and geocoding was done with 
Google APIs. 

 AWS Elastic MapReduce: Amazon’s Elastic MapReduce is built on Apache’s 
Hadoop, which we utilized to do our performance tests. 

 S3cmd: Command-line tool that helped to interface to S3 without the Amazon GUI 
management console. 

 Elastic MapReduce CLI: Amazon’s Ruby MapReduce command line interface that 
helped to interface with MapReduce without the Amazon GUI management console. 



 

How To Use Our Code 
Environment Requirement 

Browser: Firefox 

OS: Linux / Mac OS 

Server: Apache Http Server 

Language: PHP 

 

Sample Web Site: http://174.129.40.164/index.php 

Mobile Portion of Web Site: http://174.129.40.164/index.php/mobile 

 

We assume that you have set up Apache server environment locally with a working version of 

PHP and MySql with the server.  

 

1. Unzip file 

2. Place the folder(yoonswhiteboard) at the root of Apache server directory 

3. Set up the database by executing the SQL scripts in the file DBShemaDescription.rtf 

4. Configure the database in the system/application/config/database.php file 

4.1 Replace hostname with 127.0.0.1 if MySql server running locally 

4.2 Replace the database username with yours 

4.3 Replace the database password with yours 

5. Add an “uploads” directory at the root of the web server if not existing (at the same level 

as the “system” directory) 

6. Use Firefox browser and go to 127.0.0.1/yoonswhiteboard 

7. Now you should see the first page of our web pages.  

http://174.129.40.164/index.php
http://174.129.40.164/index.php/mobile

