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1. Overview  

WikiTruthiness  is  a  novel  web  service  which  highlights  contentious  content  in  Wikipedia 

articles.   WikiTruthiness has benefits for all levels of Wikipedia users: 

• Readers can use WikiTruthiness to question existing information in an article. 
• Editors can use WikiTruthiness to clean up existing articles. 
• Administrators can use WikiTruthiness to streamline their regular article clean-up tasks. 

2. Goals  

The main goal of our project  is to analyze the contention level of Wikipedia content on an 

article-by-article basis and  display analyzed articles in such a fashion to clearly show which parts of an 

article are contentious and which are relatively stable.  From our specification:  “Wikipedia allows 

users the ability to get the full history of any article on the site, and we are interested in seeing what 

paragraphs (or possibly sentences) have seen the most reversions, edit wars, or other indicators that a 

certain piece of information is contentious.”  Secondary goals included satisfactory performance of the 

application (with requests handled within ten seconds in the worst case) and creating a sufficiently easy 

to use application.

3. System Design and Algorithmic Choices  

The system follows the high-level flow diagram in Figure 1.   The system modules split into 

front-end and back-end segments, with “middleware” covering areas of interaction between the two 

segments. 

3.1. Front-End Modules  .  As shown in Figure 1, the user starts at the home page, which 

contains information about our project and a search box powered by Google's Custom Search API. 

Performing a search takes the user to the search results for their query – a modification of the Google 

results  which prominently  lists  links  to  the  WikiTruthiness  results  as  well  as  links  to  the original 

Google results.  Through the Google Custom Search API, we limit all results to Wikipedia articles.
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Figure 1.  The flow diagram of WikiTruthiness from starting at the home page 
http://www.wikitruthiness.com and ending with display of the analyzed text.

When the user selects a result, the page module first looks at our data caches (a local instance of 

memcached as well as Amazon S3) to determine if the Wikipedia article has already been analyzed.  If 

so, then that result is displayed; otherwise, the unanalyzed version of the Wikipedia page is displayed 

and a request to grab and analyze the Wikipedia article is appended to a back-end queue.   

The  front-end  comes  back  into  play  after  the  user  refreshes  his  request  for  the  analyzed 

Wikipedia article.  With the refresh request, the front-end grabs the analyzed graph with the marked up 

content (for description of the markup, see the next section) and displays the content via the Mediawiki 
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API.  We utilized Ruby on Rails for all of the front-end work.

3.2. Back-End  Modules  .   The  application  uses  the  back-end  modules  when  a  currently 

unanalyzed article is added to the task queue by inserting data about the article (timestamp of request 

and title)  into the database.   When a thread is  available,  the thread grabs the data about  the next 

unanalyzed article from the database and parses the HTML code into nodes.  Nodes are based on a size 

no  greater  than  a  sentence  (they  will  break  at  end-of-sentence  or  upon  encountering  any  HTML 

markup).  Then the graph module computes the difference between the versions of the article on a node 

by node basis, based entirely on the last 30 revisions to the article.   During this computation, the graph 

module also determines the nodes' “scores”.  A score is determined by what occurs to the node at each 

revision – the longer a node (and its neighbors) remain unchanged, the lower the node's score goes. 

Two different versions of the algorithm were tested, with the latter providing results indicating a more 

realistic, lower-level of contention in articles.

From a score, the level of coloring of a node on the website can be determined.  We encoded 

the coloring scheme in <span> HTML tags including a span class distinction from trust level 1 to trust 
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Each node's initial score = 1.0
For each revision:

If node replaced: 
score *= 1.05;

Else if node deleted:
previous node's score *= 1.1;

Else:  //the node stayed the same
score *= 0.97;

Figure 2.a.  Pseudocode of the initial scoring algorithm

For each revision:
score * = Math.pow(1.03, count_node_unchanged); 
score *= Math.pow(0.92, count_node_readded);

Figure 2.b.  Pseudocode of final scoring algorithm



level  10  (in  what  initially  appears  to  be  a  backwards  ranking  –  a  trust10  is  the  highest  level  of 

contention and therefore is highlighted with the darkest hue of orange , and a trust1 is the lowest level 

with little to no contention and therefore no coloration—this was done so that we could use the same 

CSS styling as WikiTrust).  The algorithm in Figure 3 determines the mapping from score to trust level. 

In this algorithm we perform smoothing on the scores to keep the trust level results within certain 

bounds  to  avoid  all  nodes  being  marked  as  trust10  and  a  page  filled  with  high  coloration.   We 

discovered that  due to  the relatively small  sample size of  revisions  (30) and the resulting limited 

movement of scores in the nodes, without score and trust level smoothing, all nodes appeared to be 

extremely recently added and therefore stuck with high trust level scores.

The back-end modules were initially written completely in Python.  However, in a search to 

find a more efficient and accurate mapping from score to trust level, the score mapping module was 

rewritten in Java.  The rewritten component yielded significant improvements in analysis execution 

speed  – from several minutes for large articles to approximately 60 seconds – and reduced the number 

of nodes labeled as trust10 (the highest level, showing the most contention) to more realistic levels.

3.3. Interaction Between Front-End and Back-End  .  The front-end and back-end interacted 

through multiple pieces of technology.   The front-end code made a direct request to the back-end code 

via HTTP to kick-start  the back-end retrieval of the 30 most recent versions of the article and the 

subsequent analysis.  We utilized a MySQL database to queue these requests and store those versions of 

requested Wikipedia articles.  To speed up our processing, we cached our results in two locations which 
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//place boundaries of min and max where most results should lie
trustLevel = (node score – min) / (max – min) * 10 + 1;
If ( trustLevel > 10) trustLevel = 10;
If  (trustLevel < 1) trustLevel = 1;

Figure 3.  Pseudocode for translation from node score to trust level for 
adding coloring to article.



both the front-end and back-end hit – (1) in a local instance of memcached and (2) Amazon Web 

Services' S3 key-value store to cache all of our results.   Both sides were supported by AWS Elastic 

Compute Cloud with a small instance to run the front-end code and a high instance for analysis.  We 

used Git to manage our source code.

4. Sample Screenshots of Typical Usage Scenarios  

Figure 4.  WikiTruthiness home page.

One of the goals for the project was to keep the site easy to use.  On the home page, we provide 

a simple search box (like Google) and a description of our project about why our results would be 

interesting to different Wikipedia users.
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Figure 5.  The search results page.

After a user enters a search term (here, it is “slackware”), the specialized Google search is run 

and our results, along with the Google results for the search are displayed (in concurrence with the 

agreement to use the Google Search API).  Again, on this page, the UI is basic and easy to understand.
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Figure 6.  The Wikipedia result shown when the given article has not yet been analyzed.

Figure 7.  The analyzed result.
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5. Experiments and Results  

Since our results are of a subjective nature, we decided to evaluate the “correctness” of our 

system against existing work for similar applications.  WikiTrust (http://www.wikitrust.net), a product 

from The Institute for Scalable Scientific Data Management at the University of California, Santa Cruz, 

highlights untrustworthy words within a Wikipedia article.  WikiTrust computes the trustworthiness of 

each word in an article by examining the previous six versions of the article and aggregating statistics 

about the differences between consecutive version pairs into tuples. WikiTrust then uses a trained data 

classifier to determine how untrustworthy (on a scale from 0 – 10) each word in the initially requested 

article version is. 

We leverage  WikiTrust's Firefox Web browser extension for initiating requests to their service 

for a Wikipedia article and their web API for retrieving the HTML-formatted output of their service for 

an article. We extend the open-source HTMLParser Java framework for evaluating our results for a 

Wikipedia  article  versus  those  from  WikiTrust for  the  same  article.  By  counting  the  number  of 

potentially untrustworthy words identified by WikiTrust which fall within our hypothesized blocks of 

contentious content we are able to compute the number of true positives, false positives and false 

negatives our system generates with respect to the results from WikiTrust. These metrics are defined as 

follows.

• True  Positives: Count  of  our  identified  blocks  of  contention  which  contain  at  least  one 

identified word from WikiTrust.

• False  Positives: Count  of  our  identified  blocks  of  contention  which  do  not  contain  any 

identified words from WikiTrust.

• False Negatives: Count of words identified by WikiTrust which do not fall within our identified 

blocks of contention.
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http://www.wikitrust.net/


Upon computing these metrics for an article, we are able to compute our precision and recall against 

WikiTrust's results by applying the following formulae. 

Precision  = True Positives / (True Positives + False Positives)

Recall = True Positives / (True Positives + False Negatives)

By evaluating a well-mixed set of 33 Wikipedia articles, our system experienced an average precision 

of 20.25% against WikiTrust and an average recall of 68.93% against WikiTrust. More detailed results 

are summarized in the table in Figure 8.

Precision Recall
Worst 10.84% 52.43%

Average 20.25% 68.93%
Best 38.82% 79.37%

Figure 8. Table of precision and recall against WikiTrust results.

6. Surprises and What We Learned  

We had several surprises and setbacks along the way from conception of the idea to final result. 

Devising  and  then  refining  the  algorithm to  do  the  analysis  of  the  difference  between  the  article 

versions and the translation of that analysis into a coloring scheme for the web page took significantly 

longer  than we expected.   Figuring out  a  workable  level  of  granularity  for  analysis  (paragraph v. 

sentence v. word) and then determining how to account for all of the changes from one version to the 

next (particularly in regards to deleted nodes) became a major challenge.  

The  importance  of  maintaining  cache  coherency  across  the  local  cache,  AWS S3,  and  the 

MySQL database was another surprise.  Without cache coherency, we ran the risk of overwriting data 

that was in the local cache prior to storing it in AWS S3.  We dealt with this situation by checking every 

time an article is displayed that the local cache and AWS S3 contained the same material.

We experienced noticeable  difficulty  in  comparing the results  of our work with those from 

WikiTrust.  WikiTrust employs a different method than ours for rendering their output into an HTML 
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format. After much debate, we settled on extracting the text content from the results from WikiTrust and 

our own results for an article and storing the starting and ending positions of highlighted words in both 

results for comparison. The delay in finalizing our results comparison algorithm and implementation 

significantly limited the number of articles we could evaluate our system with.

There is much variation in diff libraries as well. We had significant variances between diffs 

returned by difflib (part of the standard Python library) and equivalent Java libraries, and even between 

different runs of the Java library. (The Java library contains several difference algorithms and tries them 

all until it reaches a timeout, then picks the best result.) One could even conceive of a pathologically 

stupid difference algorithm that just says “delete all the items in the old sequence and replace them with 

the items in the new sequence”—technically it would return a correct result, but our algorithm would 

not return anywhere near the correct result.

In the end, our bottleneck ended up being retrieving revisions from Wikipedia. Each revision 

requires a separate API request to their servers, which we rate limited to 1 request per second (as 

permitted via their robots.txt file). If we were able to improve this retrieval speed, or work with a local 

file cache, we would greatly improve the latency of our analysis

With the many challenges encountered during the development process, we learned numerous 

things, including:

• Mixing technologies and having them interface smoothly is difficult.  We figured out how to 

communicate  with  the  S3  cache  from  both  Ruby  on  Rails  and  Python  code  and  how  to 

communicate with the MySQL database from both Java and Python code. In hindsight, S3 and 

MySQL were both excellent choices of infrastructure due to their being very well supported by 

all platforms used in the project.

• The importance of choosing a development language both for performance issues and for code 
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readability and debugging concerns.  We found that the Python code ran slower than Java code 

computing the same version analysis and ran into problems trying to debug the Python code 

because the other group members did not have enough familiarity with Python.

7. Ideas For Future Work  

With additional  time,  several  improvements  to  the current  project  are  feasible.   First,  by grabbing 

additional versions of the article for the analysis we could provide a longer term view of the contention 

level of the article.  For an improved user experience in regards to performance, we could prefetch and 

analyze articles linked from the currently viewed article.  Even if the user did not end up selecting a 

link, having the data already fetched and analyzed provides better performance for subsequent users. 

Also, the further refinements to the contention algorithm are appropriate.

8. Conclusions  

As a group, we found the project interesting and challenging.  Utilizing S3 and EC2 instances at 

no cost was a great benefit, as it improved the performance of our end product.  We are pleased with 

the results,  although regret  not having additional time to improve upon the contention determining 

algorithms.

9. Appendix  

9.1. Mapping Group Members to Work  

Katherine Baker Comparative Evaluation against WikiTrust

David Koenig Code for back-end

Aaron Miller Comparative Evaluation against WikiTrust

Cullen Walsh Code for front-end

All group members worked on coding, evaluation, and devising/improving upon the algorithm 

to analyze differences between versions of Wikipedia articles; the table above refers to primary focus. 

All members also worked collaboratively on the presentation and this report.  There were no 
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problematic dynamics in our group.

9.2. Externally-written Code Utilized  

• We used Python's difflib as the back-end algorithm. This is part of the Python standard library.

• Portions of the Java standard library, including Sockets and difference algorithms.

• Google Custom Search provides the search results on our site.

• Evaluation was was greatly aided by the HTMLParser Java framework.

9.3. Instructions on How to Start and Use Project  

Our code branches are highly interdependent, and likely will require configuration (IP address 

adjustments, MySQL database setup, Python 2.6, Java 6, Ruby 1.8.7, Rails 3, etc) not specifically listed 

here. We are hosting a version of the program at http://www.wikitruthiness.com/; please visit this site to 

use the project.  Also see the README file.
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