

Kha Nguyen, Michael Mathews, Sean Ren, Peter Scheibel

Dec 17, 2010

 2

Table of Contents

Goals for the Project ... 1	
System Design & Algorithmic choices ... 1	

System Overview .. 1	
Classifier ... 2	
Database .. 4	

Typical Usage Scenarios ... 5	
Scenario 1: Sign up, create a new category, find a feed, and assign the feed to a
category ... 5	
Scenario 2: Browse articles in a category. Flip through pages. Mark some articles as
irrelevant. Read an article. .. 7	
Scenario 3: Edit name and remove feeds in a category .. 8	
Scenario 4: View Queue ... 9	

Experiments and Evaluations .. 10	
Classifier Testing .. 10	
Usability Testing ... 11	

What we learned/what we would have done differently ... 12	
Conclusions ... 13	
Appendices .. 14	

Who Did What .. 14	
External Code .. 14	
Readme for Read.me ... 15	

List of Figures

Figure 1: System Diagram .. 2	
Figure 2: Entity Relationship Diagram for Database .. 4	
Figure 3: Category Page After Sign Up .. 5	
Figure 4: Adding a Category ... 6	
Figure 5: Finding a feed .. 6	
Figure 6: Adding a feed to a category ... 7	
Figure 7: Browsing articles in a category ... 7	
Figure 8: Marking articles as irrelevant .. 8	
Figure 9: Reading the full article .. 8	
Figure 10: Activating the view for editing a category .. 9	
Figure 11: View for editing a category ... 9	
Figure 12: Viewing the queue ... 10	
Figure 13: F-measure vs. Number of Training Examples for Classifier Variants 11	

 1

Goals for the Project

We had two major goals:

1. We wanted to simulate the look and feel of a newspaper. Many RSS
readers lack a stylized appearance, and we felt that an aesthetically
pleasing interface would engage users of our service and help distinguish it
from ‘the competition.’

2. We wanted to avoid overloading users with content; showing them articles

that they were most interested in with minimal effort on their part.

System Design & Algorithmic choices

System Overview

Users create their own categories - which are meant to resemble the sections of a
newspaper. Users can then associate RSS feeds with their categories. When a
user selects a category, he/she will see the most recent summaries for all the
feeds associated with that category. To avoid showing the user too much content
we limited the number of pages served to a maximum of 10 (or 4 if the classifier
is filtering articles, as discussed later).

Every feed is updated at least once a hour. Additionally all feeds associated with
category are updated when a user selects a category. A crontab job to update
feeds has been set up to run on the first minute of every hour. The system keeps
track of last modified and html etags to avoid retrieving articles in case the local
data is up-to-date. This is a good practice that allows feed publishers to save
bandwidth. The standard out from this job is emailed to a group member to
ensure successful execution.

Old articles are deleted once an hour. This is also scheduled as a crontab job. The
system removes all but the 20 newest articles from every feed. An exception is
made for the outdated articles that has been queued by at least one user.

When a user selects an article to read more, the system will load the article
website in real-time. Many levels of html parsing must be done before it is
displayed to the user. On the server, we remove html tags that could potentially
prevent our site from loading it correctly. Another level of parsing is done in
javascript so everything except the article content is removed. If the article

 2

content could not be retrieved for one reason or another, the description of the
article along with the link to the full story is shown instead.

Figure 1: System Diagram

Each category created by the user has its own classifier. The classifier initially
has no training data and is inactive; at this stage, when a user selects a category
the system displays articles from all the feeds associated with the category.

To train the classifier, the system makes use of two different kinds of user
feedback. Firstly, when a user selects an article to read more, this is treated as
implicit positive feedback - the article is added to the classifier as a relevant
training example (specifically, the title and description of the RSS item is added,
as opposed to the full article story). Secondly, each displayed article includes an
‘x’ which a user may select if he/she dislikes an article, which adds the article to
the classifier as an irrelevant training example. When the user refreshes the page,
all articles that have been read or marked irrelevant will be removed.

Classifier

The classifier is Naïve Bayes with two classes: ‘relevant’ and ‘irrelevant’. To
reduce the size of the feature space, stop words are omitted and words are
stemmed (this is not done in the classifier itself but in an external utility
function).

 3

The classifier is capable of two different types of feature pruning: frequency based
and mutual information based. As of the time of the presentation, neither
pruning method was being used in the live system (it does, however, support the
use of both pruning methods, and frequency based pruning was activated prior to
project turn-in).

Once the classifier is active, our initial approach was to simply classify each
document as relevant or irrelevant, and return only articles classified as relevant.
However, we were concerned about the possibility that the classifier would return
no articles if it classified everything as irrelevant. To guarantee the return of
some articles while still attempting quality control, we made use of some of the
details of the classifier.

Naïve Bayes assigns a score to each possible class when determining the class of a
document (in our system there would be a score for the relevant class and a score
for the irrelevant class), and the class with the highest score is the chosen class.

We decided that instead of only returning items for which we would
use the following method:

1. Assign to each document the difference between the scores for the

relevant and irrelevant classes:
2. Return a fixed number of items - those with the most positive

differences

This approach allows for returning articles that would be classified as irrelevant

(i.e. articles for which), but it favors returning articles that are ‘more
relevant’.

 4

Database

The live service runs on a PostgreSQL database. The entity representation
diagram is given below.

Figure 2: Entity Relationship Diagram for Database

The Channel table stores feed metadata, including the feed link and title. It also
stores the HTTP cache validation tags ‘etag’ and ‘last-modified’ to avoid re-
downloading article summaries if our stored version is up-to-date.

As defined in the RSS specifications, items are the individual article summaries in
a feed. The Item table stores the data associated with each item, which includes
(in addition to the feed it belongs to) at least one of a title or description, along
with possibly a link to the full article and/or a publishing date (according to the
most liberal RSS specification examined1). The Item table also includes an
‘outdated’ field, which keeps track of whether an item is ‘old’ - i.e. whether it is
older than the 20th oldest article in its feed.

1 There are three major RSS specifications: .91, 1.0, and 2.0 (which is the most flexible in what is allowed).

.91: http://www.rssboard.org/rss-0-9-1
1.0: http://web.resource.org/rss/1.0/
2.0: http://cyber.law.harvard.edu/rss/rss.html

 5

There are four junction tables: ‘Subscription’ keeps track of which feeds are
associated with which categories. ‘Keep’ tracks which articles each user has
queued. ‘Follows’ tracks what feeds each user likes (which may not yet have been
added to a particular category). ‘Rates’ tracks the feedback users give on articles.

Django automatically creates the User table, along with a Session table for
maintaining sessions (not shown here).

Typical Usage Scenarios

Scenario 1: Sign up, create a new category, find a feed, and assign the
feed to a category

After a user signs up/logs in, they will be presented with the categories page,
which is initially empty (fig 3.). The system detects when the user has no
categories and provides guides to get started. The user can add categories by
selecting the ‘+’ icon (fig. 3) and entering a name for the category (fig. 4). The
users can then use the search bar on the right of the categories page to find feeds
(fig. 5) and can associate them with categories by dragging the feed from the feed
list to the desired category (fig. 6)

Figure 3: Category Page After Sign Up

 6

Figure 4: Adding a Category

Figure 5: Finding a feed

 7

Figure 6: Adding a feed to a category

Scenario 2: Browse articles in a category. Flip through pages. Mark some
articles as irrelevant. Read an article.

When a user selects a category to browse, he/she can navigate through pages by clicking
the “prev”, “next”, or the paging dots (fig. 7). The user can mark articles as irrelevant by
clicking the red “×” that appears when the mouse hovers over an article (fig. 8). The user
may read the full article by clicking on the article’s display panel (fig. 9).

Figure 7: Browsing articles in a category

 8

Figure 8: Marking articles as irrelevant

Figure 9: Reading the full article

Scenario 3: Edit name and remove feeds in a category

The ‘edit’ option appears when the mouse hovers over a category (fig. 10). When
the option is selected, an editing view for the category expands (fig. 11) which
allows users to remove feeds and change the category name.

 9

Figure 10: Activating the view for editing a category

Figure 11: View for editing a category

Scenario 4: View Queue

To view their queue, users can select the “queue” button on the top right.

 10

Figure 12: Viewing the queue

These are the screens in most common usage scenarios. Many other pages, such
as sign up, login, and help, are not included in this document but can be viewed
in the demo.

Experiments and Evaluations

Classifier Testing

We wanted to evaluate whether feature pruning could be used to improve the F-
measure of our classifier. To do this we made use of the RCV1 dataset2, which
consists of articles that have been human-labeled using a set of subjects.

We chose a subset of subjects to represent a user with particular preferences, and
treated the entire set of data as being part of feeds that were served to one
category for the user. Under this scheme, articles having one of the chosen
subjects would be considered relevant, and otherwise they would be irrelevant.

The following experiment was repeated 25 times to obtain average precision,
recall, and F-measure after training with up to 150 documents in increments of 5.

2 Lewis, D. D.; Yang, Y.; Rose, T.; and Li, F. RCV1: A New Benchmark Collection for Text Categorization
Research. Journal of Machine Learning Research, 5:361-397, 2004.
Available at:
http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm

 11

Document samples were taken from a pool of 23149 documents, with all articles
labeled ‘government/social’ (6970) being considered relevant. Pruning was
triggered whenever the number of features exceeded 1000, and reduced the
number of features to 300 (150 per class):

1. Pick 150 documents for training the classifier and 3000 for testing from a set of
23149 documents.
2. Repeat:
 a. Add 5 training examples to the classifier
 b. Classify all testing documents. Record precision, recall, and F-measure.

Figure 13: F-measure vs. Number of Training Examples for Classifier Variants

It should be noted that documents in the obtained dataset are longer than the
typical article summary: 120.9 words per instance (averaged over the 23149
documents) versus 31.4 words per article summary (averaged with 1394 articles
from 20 feeds).

As visible from the graph, feature pruning does not enhance the performance of
the system. Using two-sample unpooled t-tests with a critical region of .05,
frequency based pruning was found to generally have similar recall and worse
precision compared to no pruning, and mutual information based pruning was
found to generally have worse recall and similar precision.

Usability Testing

We conducted usability tests with several computer science students, who are
potential users of our RSS reader. The tests were organized into two rounds, the
first round had three testers and the second round had two. For each tester, we
assigned them tasks for all the scenarios, and let them perform the tasks while
thinking aloud. We observed the tester’s performance in the tasks and wrote

 12

down anything noticeable. Every test revealed new bugs and usability issues.
After the first round, we gathered all the notes and compiled them into to-do
items, prioritized the bugs, and fixed them. After all the bugs were fixed, we
conducted a second round of usability tests. Besides some minor issues, the
testers’ experiences significantly improved thanks to the bug fixes.

Examples of bugs and usability issues:

● Issue: HTML not parsed correctly using our own regular expressions

 Fix: use a Python HTML parser, Beautiful Soup, to parse HTML pages
● Issue: No feedback when dragging a feed to a category

 Fix: Add highlight and text feedback to the category box when the feed is
 dropped
● Issue: Do not know what a feed is and how to add it

Fix: Besides our guides (yellow post-it notes) after registration, we added
 a help page that guides users through the process of adding a feed
● Issue: When browsing articles, don’t know where the articles are from

Fix: Add a source description under article title

What we learned/what we would have done differently

We’ve learned a great deal as well as realized many things that could be done
better. By the end of the quarter, our main problems occur in UI, classifier, and
performance. It would have been very beneficial if we have done them differently
in the beginning.

Using a framework can be very beneficial. Django made the web development
process manageable. It saved us time by providing library for database access,
template frameworks and session management. All of which would of taken very
long time to implement ourselves.

We learned that it is important to listen carefully to user feedback. We should
have talked with people about our vision and goals, and developed paper
prototypes before coding the user interface. Paper prototype allows us to make
changes easily so we can have a well-tested UI before implementing the final
version. This would have allowed us to create a friendlier user interface.

If we were starting over again, we also would have experimented with more
diverse classification schemes. The Naïve Bayes classifier used in our system
requires many training examples to learn the preferences of a user for a
particular category. Users would likely become frustrated when they see articles
similar to those they have provided negative feedback on. This can be especially
difficult to avoid if an article is a conjunction of relevant and irrelevant concepts
(for example, a user may find articles about international criminals interesting,

 13

but does not want to hear about WikiLeaks). With these issues in mind, it would
have been worthwhile to test a separate technique to filter content (like keyword
based search) to get a more interesting comparison.

We could have improved the system performance-wise. Firstly, we implemented
caching too early. The view is not updated when needed. This had a significant
impact on our classifier’s performance. We should have got our system working
properly, and then implemented caching later. Secondly, our current system
updates feeds as we view a category. This does reduce the performance of the
system, and have potential scalability issues if the number of users were to be
increased. We would automatically update feeds more frequently and not
updating when users choose category.

Conclusions

Although the usefulness of the service is limited by speed and classification issues
and many of the extra features we planned were not implemented, we have
achieved our initial goals. The application displays articles in a newspaper layout,
learns user's preference on the fly, and only shows stories that users really care
about. In conclusion, we have done a successful project within the 10-week
timeframe and with the resources we were given.

Ideas for future work:
● Add caching in a way that it will refresh when users expect to see changes
● Updating feeds should always be a crontab job that runs in the

background. It shouldn’t be triggered by user interactions, which take a
long time.

● Refine the user interface to make it more robust and browser compatible.
● Try new classifiers and training data to improve our machine learning

algorithms.
● Better method for retrieving articles or doing more to make it reliable.
● Implement “favorite” feature
● Supports for other languages
● More the public testing

 14

Appendices

Who Did What
● Sean Ren: user interface design and implementation, Django view

functions for most pages, javascript functions, usability testing
● Peter Scheibel: database schema, Django model definitions, Naive

Bayes classifier
● Kha Nguyen: application deployment and maintenance, classifier

utilities, repeat detection experiment, homepage, queue functionality for
application, help page

● Michael Mathews: updating feeds, setting up crontabs, fetching/parsing
of feeds and individual articles

External Code

Python:
[Django]
http://www.djangoproject.com/
Django is a high-level Python Web framework that encourages rapid
development and clean, pragmatic design.

[Stemmer]
http://pypi.python.org/pypi/stemming/1.0
Stemming is done using Stemming 1.0 package for Python. Stemming was used
with the intention to increase precision of the classifier.

[Feed Parser]
http://www.feedparser.org/
Universal feed parser is a python library for parsing feeds.

[HTML Parser]
http://www.crummy.com/software/BeautifulSoup/
Beautiful Soup is a Python HTML/XML parser designed for quick turnaround
projects like screen-scraping.

JavaScript:
[jQuery]
http://jquery.com/
Query is a fast and concise JavaScript Library that simplifies HTML document
traversing, event handling, animating, and Ajax interactions for rapid web
development. jQuery is designed to change the way that you write JavaScript.

[Readability]

 15

http://lab.arc90.com/experiments/readability/
Makes reading more enjoyable by removing clutter that surrounds what you are
reading.

Readme for Read.me

Project URL

http://readme.cs.washington.edu

Browser Compatibility

The service is compatible with Firefox and Chrome (Internet Explorer has
compatibility issues).

Deployment Instructions

The application was deployed on Cubist’s apache server with mod_wsgi.

1. Mod_WSGI: an apache module that provides for hosting Python Web
applications.
Depending on the platform, the installation process can be slightly different.
For cubist server, we had to install the module for fedora. The module for fedora
can be obtained at
http://download.fedora.redhat.com/pub/epel/5/i386/repoview/mod_wsgi.html
From this url, a rpm package can be downloaded and installed. (rpm -ivh
package.rmp)

2. Apache configuration: in the case of cubist server, apache has been installed, and
the configuration file is located at “/etc/httpd/conf/httpd.conf.”
a. Once mod_wsgi was installed, Apache had to be told to connect to the module.
This was done in Apache configuration file by “LoadModule wsgi_module
modules/mod_wsgi.so.”

b. A virtual host is needed since cubist hosts multiple domains using the same IP
address. This is done by <virtualhost 128.208.1.51:80> </virtualhost>. All other
configurations must be encapsulated within these 2 tags.

c. WSGI Daemon: wsgi runs in daemon mode for the purpose of resetting the
application on Apache without resetting Apache. Daemon mode also offers faster
performance because we don’t have to tune the Apache MPM settings. Daemon
mode is enabled by:
wsgirestrictstdout off
wsgidaemonprocess django
wsgiprocessgroup django

 16

d. Direct Apache to the Readme application: we need to tell Apache to direct to
our application using mod_wsgi. This is done by “wsgiscriptalias /
/www/htdocs/projects/10au/cse454/c/SmartRSS/apache/django.wsgi.” This
alias will match the request to root directory to wsgi setting.
WSGI setting: is in django.wsgi file. The syntax of this file is Python syntax. What
this file does is to add the paths of the application to Python search paths, and to
point the Django settings module to our application settings module.

e. Media files: Django does not serve media files, so this is done separately by
“alias /media/ /www/htdocs/projects/10au/cse454/c/SmartRSS/media/” and
“alias /admin_media/ /usr/lib/python2.6/site-
packages/django/contrib/admin/media/” to serve image contents.

f. Edit settings.py to configure the application settings

g. For a detailed configuration, please see the attached apache.txt file.

