

Freshipes

Min Sul, Panharith Thong, Nicholas Brekhus

CSE454 – Autumn 2010

Project goals

Our primary objective in creating Freshipes was to make it easy to buy ingredients for recipes one finds online.

To facilitate this goal, we curated some recipes at a site of our own design, this gave us the opportunity to

improve the user experience and learn about building websites. It also allowed us to restrict the set of recipes

to ones we had good metadata for.

System Design

Infrastructure

Our web application was developed atop mysql and php on apache linux (LAMP); we had originally intended

to use django on apache, but our lack of familiarity with the environment caused us to abandon it before we

started breaking ground. The front end code heavily used jQuery and jQuery plugins/snippets.

We had several offline processing jobs, for which we used python as the primary language. These jobs

depended on various external libraries (lxml, scrapy, py-wikimarkup, …) and were used for data acquisition

and preparation.

Application Design

Web Application

Front End

The front end of the web app was done in PHP and made use of Javascript, JQuery and CSS. The choice of

design was to captivate the users that browse for recipes and understand their needs. To captivate, we want

to show pictures of recipes because that’s what attracts people to browse our site. The users need to find

recipes fast, the big search bar on the page and we want to them to discover and try new recipes (new recipes,

featured section, top rated and recommended section). For that used JQuery to display the recipes in a

dynamic way so users can rollover on a recipe and find information quickly about that recipe and whether

they are interested or not.

The autocomplete search feature makes use of JQuery, AJAX and PHP to retrieve data in the database in the

background from the user query input. The results from the database are passed back in JSON format to

JQuery to display the search suggestions. Typing a search that didn’t match any specific recipe will display a

result page where it lists all the recipes that contain the query searched. JQuery and CSS are useful to display a

nice formatting of recipe results, where the next batch of results is scrolled up. We get the result by doing a

MySQL query from PHP and display the results in an HTML formatted. Each recipe name is linked and uses GET

to pass the recipe id to PHP to display the detailed recipe page. Each recipe in the list of recipe results will

have a small description and an average rating. Clicking on the recipe link will bring to the detailed recipe

page.

In the detailed recipe page, we use PHP to get the recipe id variable passed in the URL, we can query the

database for the image, recipe rating, description, ingredients, descriptions, reviews pertaining to that recipe.

The ingredients name have attributes “url” and “rel” to help JQuery figure out which ingredient name the user

clicked on which then pops up an overlay iframe of Amazon Fresh for the user to buy that ingredient and other

ingredients needed for that recipe. The ingredients are retrieved from the “tag” table in the database which

contains the entire ingredients name for that recipe. A facebook plug-in was inserted on that page to let users

comment and also post on their facebook profile, as a way to advertise the site.

One of the distinct features is the “Recipe Wall” page, where it lists 4 by 5 recipe thumbnails for users to

discover new recipes they might like to try. This is again done using JQuery and PHP where it queries MySQL to

pick 20 randomly selected recipes and display them on the recipe wall. JQuery makes it so we can click on

each thumbnail to see the description and if the user likes it they can go directly to that recipe page for more

detailed directions and ingredients to use.

Database Schema

Scraper

Using python’s various modules and libraries along with Scrapy, an open source scraper/crawler, we were able

to create a scraper to obtain substantial data, or at least as much as we could obtain and connect with our

recipes. Regular expression was our main component in scraping for our data and scrapy helped organize and

export the data, especially converting “items” gathered through scraping to xml format which can be

converted and imported into database.

Scrapy was mainly used to scrape the reviews off of allrecipes.com which contained large volumes of reviews.

First we decided to obtain the most popular recipes or the most reviewed recipes since it will help us

determine which recipes are recommended by which reviewers and what other recipes these reviews also

liked. Allrecipes.com had list of all the recipes and we could order them by their ratings in descending order.

With this the spider can be created with a seeded url of the first page of the list of recipes then proceed to

scrape the recipes and their reviews page by page. And because of the way the list was structured it was easy

to control how much reviews about each recipes to scrape. We decided that about 3-4 pages of each recipe

was enough for our purposes. In total we scraped over 150,000 reviews which we deemed was more than

enough for developing and testing our recommendation scheme and algorithm namely slope 1.

We had little bit of trouble scraping images since a lot of them were copyrighted and pages in wikia that

contained images we wanted were not as well structured as we’d like. Fortunately, Nick found that we could

obtain images through using wikia’s url scheme. Disappointingly however, when scraping images through

scrapy, we found that it hashed the names which we could not use since we needed to connect them with our

recipes. So we ended up using simple python modules and libraries to read list of recipe names from the data

dump Nick created and simply scrape/download images one by one. We were able to obtain over 2,000

images in the end which made our site considerably more tasty.

Exporter

Nick wrote the exporter, which took a mediawiki db dump from recipes.wikia.com/wiki/Special:Statistics and

translated it to our schema. To accomplish this goal he structured the exporter program into two separate

parts.

The first part of the program is a ‘translator’ which leveraged lxml and py-wikimarkup to parse the mw xml

dump. The translator also contained a lexicon based IE system which tagged recipes based on the targets of

their internal wiki links.

The second part of the program was an exporter, which was designed to be flexible in the event our table

schema changed (and it did). It also had a review dump target, to fold the reviews Min scraped into our

database.

Typical Usage Scenarios:

Above is a screenshot of the home page of our recipe site. There are several components to note. First, it

features in the center a search bar where users can search for recipes by title and also by ingredients.

The search bar has autocomplete where it will list all the recipes matching the text input in the search bar

when the user types.

A section “New Recipes” where we list the 12 latest added recipes that have a picture. The user can rollover

each thumbnail of the new recipe and preview the description. Clicking on the right arrow will display the next

batch of 4 newly added recipes.

Below this, we have the “Featured recipes” where the site administrator can pick a few recipes to be featured

considering they match the season (i.e. Thanksgiving recipes, Christmas recipes, or other occasions). They are

also scrollable left and right to view the previous or next recipes

respectively. The “Recipe#1”, “Recipe#2”, “Recipe#3” tabs below it

can be clicked to quickly access a specific featured recipe.

On the right side, we list the 3 top rated recipes based on the user

rating.

To view the next top rated recipe, the user can click on the up or down

arrow.

The recommended section usage is identical to the top rated section

but displays only the recommended recipes.

The login form will show up if the user hasn’t already signed

in. Users can sign up from 2 different places, from the tab

and from the right section “My Recipes Box”. Or if the user

is a new member they can click on “Join Now” that will

redirect to a sign up page.

The “My Recipes Box” when logged in will show the saved

recipes of that user and show a log out link.

After the user search a query in the search bar and doesn’t match any specific recipe in the database, it will

show the search results matching the query with the name of the recipe, a description and the rating, where

the user will be able to browse for the recipe they’re looking for.

When the user finds a specific recipe match, the recipe page will show the detailed recipe with the image,

rating, description, all the ingredients needed for that recipe and the directions. The ingredients name have

link. When you click on them it will pop up an iframe to purchase that ingredient on Amazon Fresh. It will

overlay the current page with a close button.

The iframe has the recipe name and the ingredients that are needed for that recipe. The user can click on the

name of ingredients to buy to see a list on amazon fresh with different price where the user can choose to add

to cart. After clicking on the ingredient it will remove that ingredient from the list to buy.

At the bottom of the detailed recipe page, we have the “Review” section where the user can browse for

reviews and ratings about that recipe. The user can also post comments for that recipe by logging in facebook.

Users can create an account by clicking in “Join Now” link. The registration form has 2 steps before the

account is created.

The recipe is a useful feature that list many recipe thumbnails for users that are undecided about what to

cook. Each thumbnail is clickable. When clicked on, it will show the description of that recipe. If the users want

to know more about that recipe, they can click on the recipe link name.

Experiments

We conducted one experiment, a user study, during finals week. We used google docs to create the survey

form, which had 3 tasks and asked a total of 19 questions. 12 people responded to our survey. The survey can

be found at the following url: goo.gl/Eu9lj. Contained within the archive is a pdf named

freshipes_user_study_summary.pdf which has the complete summary. The survey was aimed at gathering

data which would be useful if we were to further refine the product. The main take aways from the user study

were as follows:

 Most people had a good impression of the site when they first arrived at it, after using the site this had

somewhat decreased, but was still positive overall.

 The visual appearance of the site received high ratings but many people complained about font sizes,

text flow and spacing.

 The task people had most trouble with was adding ingredients to their amazon fresh cart; there were

numerous issues and many found the interface unintuitive and confusing.

 Most people did not have trouble navigating within the site but they felt the search feature produced

suboptimal results.

 A lot of people had suggestions about how to improve the auto-complete feature and at least one user

found it confusing.

The data suggests there is a lot that we could do to make the site better but also shows that the site is at least

usable in its current state. We view this as a win. If we were to continue development on the site a more

measured approach would be taken in the areas noted above to tighten up the presentation (particularly the

results page and recipe page) and we would either improve or rework the confusing functionality (auto-

complete, add ingredients to cart) with the user complaints in mind.

Surprises and What we’ve learned:

At the start of our project we expected the data we can gather would be clean

Building a site with a lot features planned at the beginning and using a MVC framework are nice to have.

However when we have to learn a new framework and a new language, it takes a lot of time to learn how it

works and how to build a good secured website without code duplication. We had to cut down on features

that are not core to our website. In addition we had to throw scalability and security out the window and

moved from our intention to use Django and used PHP, MySQL to render our sites but we still used Python for

our backend.

One disappointing technical challenge we ran into was that Amazon Fresh did not have public API so that

seamless integration of purchasing ingredients from Amazon Fresh was not possible. Therefore all we can do

(at least with the time we had) was to use iframe and find workarounds to make the user able to buy the

ingredients on Amazon Fresh.

http://goo.gl/Eu9lj

Future work:

One of the biggest limitations we faced was the limited data we had especially for the images of recipes. Like

the saying “A picture is worth a thousand words”, a good picture of a recipe can get the user interested in the

recipe while long description of a recipe makes users to go to a different recipe site. If we could effectively

match all the recipes with its appropriate images users can effectively search for the recipes they are

searching for so they can decide right away which recipe to cook. We can achieve this by doing more

sophisticated table structures and data in the database and also have users themselves update and add

images to recipes that are missing pictures as well as submit a recipe to the site.

As we mentioned in the surprised section above, we would like to integrate Amazon Fresh into the website

without using somewhat clunky popup frame. In addition to this we can allow users to select only the

ingredients that they need from the list of ingredients then a single click of “Buy ingredients” would list the

choices for them in Amazon Fresh.

Moreover, we could add a feature for the users to update and add ingredients they already have, then let

them search for recipes that contain most of these ingredients. This would enable users to use whatever they

already have in their fridges (less food waste) and find a recipe that is new and they might enjoy.

Another feature that we started but didn’t complete is using the slope one algorithm for the recommendation

of recipes.

Other features started but not completed is to finish the categorization of the recipes on “Quick & Easy”,

“Seasonal”, “Healthy”, “International Cooking” and other categories.

Allow the users to rate recipes and display how-to cook videos from the internet especially from YouTube to

cook that specific recipe are good features to have.

Also, one of the most important tools to have on our site would be an automatic crawler that periodically goes

on all the famous recipes sites and constantly archive and index the newly added recipes, get the images,

ratings, videos from YouTube.

We would also translate the recipe site into different languages for users of type of users to use.

Conclusions:

The project’s goals were accomplished with the main basic functionality working. The recipes we got from

Wikia were over 15,000 and more than 100,000 reviews and over 1,000 images are good enough for any user

find their favorite recipes and buy the ingredients on Amazon Fresh a big plus over other recipe sites.

Appendicies

Work distribution
 Pania: Page layout and front-end code (php, js, css, html, sql)

 Nick: Db Schema, translator/exporter glue code

 Min: Screen Scraping, reviews and images.

Group dynamics
Our group had some disagreements about which project to work on initially; afterwards there was some

debate over technical choices which didn’t cause many problems. We had some motivation problems

throughout the quarter but there were no problematic members of the group.

External code
 Mwlib, for parsing xml

 Py-wikimarkup, for rendering mediwiki fragments.

 Various open source jQuery snippets found from tutorials/etc on the web.

 Scrapy, for screen scraping.

Running the project
The steps to run the web application are not particularly streamlined, any instructions we could provide would

prove insufficient. You can visit www.fameme.com/freshipes to view a live version of our site. If you are

interested in running/building the application the basic requirements are:

 Mysql >= 5.1

 Apache >= 2.2

To run the python code you need python >= 2.6 and various eggs installed (mwlib, scrapy, py-wikimarkup).

This can be best accomplished using easy_install. Configure the site install by unpacking the site code tarball

into the document root. Update the connection string details and then import the data into the database.

http://www.fameme.com/freshipes

