Link Analysis

CSE 454 Advanced Internet Systems University of Washington

10/21/2010 5:30 PM

Copyright © 2000-2009 D.S.Weld

Ranking Search Results

- TF / IDF or BM25
- **Tag Information**
- Title, headers
- Font Size / Capitalization
- Anchor Text on Other Pages
- Classifier Predictions
- Spam, Adult, Review, Celebrity, ...
- Link Analysis
 - HITS (Hubs and Authorities)
 - PageRank

10/21/2010 5:30 PM

Copyright © 2000-2009 D.S.Weld

Pagerank Intuition

Think of Web as a big graph.

Suppose surfer keeps **randomly** clicking on the links. **Importance** of a page = probability of being on the page

Derive transition matrix from adjacency matrix

Suppose \exists N forward links from page P Then the probability that surfer clicks on any one is 1/N

10/21/2010 5:30 PM

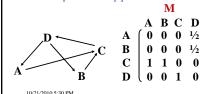
Copyright © 2000-2009 D.S.Weld

Matrix Representation

Let M be an N×N matrix

 $\begin{aligned} m_{uv} &= 1/N_v \text{ if page v has a link to page u} \\ m_{uv} &= 0 \qquad \text{if there is no link from v to u} \\ \text{Let } R_0 \text{ be the initial rank vector} \end{aligned}$

Let R_i be the N×1 rank vector for i^{th} iteration Then $R_i = M \times R_{i-1}$



R₀

1/4

1/4

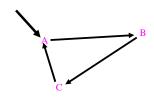
1/4

1/4

1/4

Problem: Page Sinks.

- Sink = node (or set of nodes) with no out-edges.
- Why is this a problem?



10/21/2010 5:30 PM

Copyright © 2000-2009 D.S.Weld

Solution to Sink Nodes

Let:

(1-c) = chance of random transition from a sink.N = the number of pages

$$\mathbf{K} = \left(\begin{array}{c} \dots \\ \dots 1/_{\mathbf{N}} \dots \end{array} \right)$$

$$\mathbf{M}^* = \mathbf{c}\mathbf{M} + (1-\mathbf{c})\mathbf{K}$$

 $\mathbf{R}_{i} = \mathbf{M}^{*} \times \mathbf{R}_{i-1}$

10/21/2010 5:30 PM

Copyright © 2000-2009 D.S.Weld

Computing PageRank - Example

$$M = \begin{array}{cccc} & A & B & C & D \\ A & 0 & 0 & 0 & \frac{1}{2} \\ B & 0 & 0 & 0 & \frac{1}{2} \\ C & 1 & 1 & 0 & 0 \\ D & 0 & 0 & 1 & 0 \\ \end{array}$$

$$\bigwedge_{A}^{D} \subset$$

$$\mathbf{M}^* {=} \left(\begin{array}{cccc} 0.05 & 0.05 & 0.05 & 0.45 \\ 0.05 & 0.05 & 0.05 & 0.45 \\ 0.85 & 0.85 & 0.05 & 0.05 \\ 0.05 & 0.05 & 0.85 & 0.05 \end{array} \right)$$

10/21/2010 5:30 PM

$$\begin{array}{ccc} \mathbf{R_0} & \mathbf{R_{30}} \\ \begin{pmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{pmatrix} & \begin{pmatrix} 0.176 \\ 0.176 \\ 0.332 \\ 0.316 \end{pmatrix} \end{array}$$

Ooops

What About Sparsity?

$$\mathbf{M}^* = \left(\begin{array}{cccc} 0.05 & 0.05 & 0.05 & 0.45 \\ 0.05 & 0.05 & 0.05 & 0.45 \\ 0.85 & 0.85 & 0.05 & 0.05 \\ 0.05 & 0.05 & 0.85 & 0.05 \end{array} \right)$$

$$\mathbf{M}^* = \mathbf{c}\mathbf{M} + (1-\mathbf{c})\mathbf{K}$$

$$\mathbf{K} = \begin{bmatrix} \dots & \mathbf{1}/\mathbf{N} & \dots \\ \dots & \mathbf{1}/\mathbf{N} & \dots \end{bmatrix}$$

Authority and Hub Pages (1)

Copyright © 2000-2009 D.S.Weld

- A page is a good authority (with respect to a given query) if it is pointed to by many good hubs (with respect to the query).
- A page is a good hub page (with respect to a given query) if it points to many good authorities (for the query).
- Good authorities & hubs reinforce

10/21/2010 5:30 PM

Copyright © 2000-2009 D.S.Weld

Authority and Hub Pages (2)

Authorities and hubs for a query tend to form a bipartite subgraph of the web graph.

(A page can be a good authority *and* a good hub)

10/21/2010 5:30 PM

Copyright © 2000-2009 D.S.Weld

Linear Algebraic Interpretation

- PageRank = principle eigenvector of M* - in limit
- HITS = principle eigenvector of $\mathbf{M}^* \times (\mathbf{M}^*)^T$
 - Where $[\]^T$ denotes transpose $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$
- **Stability**

Small changes to graph → small changes to weights.

- Can prove PageRank is stable
- And HITS isn't

10/21/2010 5:30 PM

Copyright © 2000-2009 D.S.Weld

Stability Analysis (Empirical)

Make 5 subsets by deleting 30% randomly

1	1	3	1	1	1
2	2	5	3	3	2
3	3	12	6	6	3
4	4	52	20	23	4
5	5	171	119	99	5
6	6	135	56	40	8
7	10	179	159	100	7
8	8	316	141	170	6
9	9	257	107	72	9
10	13	170	80	69	18

PageRank much more stable

10/21/2010 5:30 PM

Copyright © 2000-2009 D.S.Weld

Practicality

- Challenges
 - M no longer sparse (don't represent explicitly!)
 - Data too big for memory (be sneaky about disk usage)
- **Stanford Version of Google:**
- 24 million documents in crawl
- 147GB documents
- 259 million links
- Computing pagerank "few hours" on single 1997 workstation
- But How?
 - Next discussion from Haveliwala paper...

10/21/2010 5:30 PM

Copyright © 2000-2009 D.S.Weld

13

Efficient Computation: Preprocess

- Remove 'dangling' nodes
 - Pages w/ no children
- Then repeat process
 - Since now more danglers
- Stanford WebBase
 - 25 M pages
 - 81 M URLs in the link graph
 - After two prune iterations: 19 M nodes

10/21/2010 5:30 PM

Copyright © 2000-2009 D.S.Weld

Representing 'Links' Table

· Stored on disk in binary format

Source node (32 bit integer)	Outdegree (16 bit int)	
0	4	12, 26, 58, 94
1	3	5, 56, 69
2	5	1, 9, 10, 36, 78

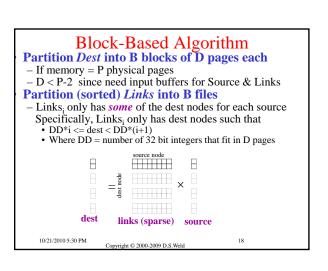
- Size for Stanford WebBase: 1.01 GB
 - Assumed to exceed main memory
 - (But source & dest assumed to fit)

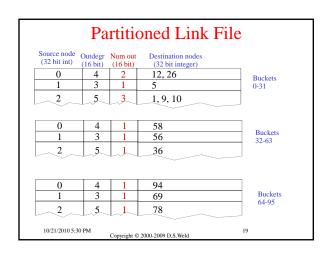
10/21/2010 5:30 PM

Copyright © 2000-2009 D.S.Weld

Algorithm 1 links (sparse) source dest \forall s Source[s] = 1/N while residual $>\tau$ { \forall d Dest[d] = 0 while not Links.eof() { Links.read(source, n, dest₁, ... dest_n) for $j = 1 \dots n$ $Dest[dest_i] = Dest[dest_i] + Source[source]/n$ $\forall d \text{ Dest}[d] = (1-c) * \text{ Dest}[d] + c/N$ /* dampening c=1/N */residual = | Source - Dest | /* recompute every few iterations */ Source = Dest 10/21/2010 5:30 PM Copyright © 2000-2009 D.S.Weld

Analysis • If memory can hold both source & dest links - IO cost per iteration is | Links| - Fine for a crawl of 24 M pages - But web > 8 B pages in 2005 [Google] - Increase from 320 M pages in 1997 [NEC study] If memory only big enough to hold just dest...? - Sort Links on source field - Read Source sequentially during rank propagation step - Write *Dest* to disk to serve as *Source* for next iteration - IO cost per iteration is | Source| + | Dest| + | Links| But What if memory can't even hold dest? - Random access pattern will make working set = | *Dest*| - Thrash!!! 10/21/2010 5:30 PM Copyright © 2000-2009 D.S.Weld

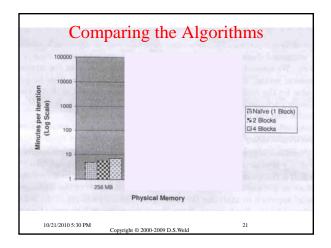


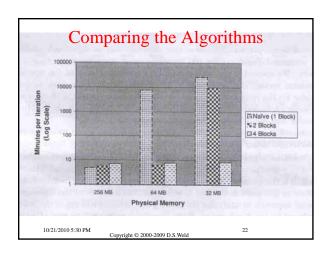


Analysis of Block Algorithm • IO Cost per iteration = - B*| Source| + | Dest| + | Links|*(1+e) - e is factor by which Links increased in size • Typically 0.1-0.3 • Depends on number of blocks • Algorithm ~ nested-loops join

Copyright © 2000-2009 D.S.Weld

10/21/2010 5:30 PM





Adding PageRank to a SearchEngine • Weighted sum of importance+similarity with query • Score(q, d) = w*sim(q, p) + (1-w) * R(p), if sim(q, p) > 0 = 0, otherwise • Where - 0 < w < 1 - sim(q, p), R(p) must be normalized to [0, 1].

Copyright © 2000-2009 D.S.Weld

10/21/2010 5:30 PM

Summary of Key Points • PageRank Iterative Algorithm • Sink Pages • Efficiency of computation − Memory! − Don't represent M* explicitly. − Minimize IO Cost. − Break arrays into Blocks. − Single precision numbers ok. • Number of iterations of PageRank. • Weighting of PageRank vs. doc similarity. 1021/2010 5:30 PM Copyright © 2000-2009 D.S.Weld