
1

CSE 454

Index Compression
Alta Vista

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 1

Alta Vista
PageRank

Administrivia

• No class Tues 10/26
– Instead go to today’s

colloquium

Copyright © 2000-2009 D.S.Weld

– Group Meetings

• Never-Ending Language Learning
– Today 3:30pm EEB 105

10/21/2010 5:30 PM 2

Class Overview

Other Cool Stuff

Copyright © 2000-2009 D.S.Weld

Network Layer
Crawling

IR - Ranking
Indexing

Query processing
Oth r oo Stuff

Content Analysis

Review
• Vector Space Representation

– Dot Product as Similarity Metric

• TF-IDF for Computing Weights
– wij = f(i,j) * log(N/ni)

Wh d

qdi

t1

t2

dj

Copyright © 2000-2009 D.S.Weld
4

– Where q = … wordi…
– N = |docs| ni = |docs with wordi|

• But How Process Efficiently?
documents

te
rm

s

Retrieval

Document-term matrix
t1 t2 . . . tj . . . tm nf

d1 w11 w12 . . . w1j . . . w1m 1/|d1|
d2 w21 w22 . . . w2j . . . w2m 1/|d2|

.
di wi1 wi2 . . . wij . . . wim 1/|di|

Copyright © 2000-2009 D.S.Weld
5

i i1 i2 ij im | i|
.

dn wn1 wn2 . . . wnj . . . wnm 1/|dn|

wij is the weight of term tj in document di

Most wij’s will be zero.

Inverted Files for Multiple Documents

WORD NDOCS PTR

jezebel 20

jezer 3

jezerit 1

jeziah 1

jeziel 1

34 6 1 118 2087 3922 3981 5002
44 3 215 2291 3010
56 4 5 22 134 992

DOCID OCCUR POS 1 POS 2 . . .

566 3 203 245 287

“jezebel” occurs
6 times in document 34,
3 times in document 44,
4 times in document 56 . . .

LEXICON

OCCURENCE

…

Copyright © 2000-2009 D.S.Weld
6

107 4 322 354 381 405
232 6 15 195 248 1897 1951 2192
677 1 481
713 3 42 312 802

jeziel 1

jezliah 1

jezoar 1

jezrahliah 1

jezreel 39
jezoar

67 1 132

. . .
OCCURENCE

INDEX

2

Many Variations Possible

• Address space (flat, hierarchical)
– Alta Vista uses flat approach

• Record term-position information
• Precalculate TF-IDF info
• Stored header font & tag info

Copyright © 2000-2009 D.S.Weld
7

• Stored header, font & tag info
• Compression strategies

Compression
• What Should We Compress?

– Repository
– Lexicon
– Inv Index

• What properties do we want?
– Compression ratio

Copyright © 2000-2009 D.S.Weld
8

– Compression speed
– Decompression speed
– Memory requirements
– Pattern matching on compressed text
– Random access

Inverted File Compression

Each inverted list has the form
1 2 3 ; , , , ... ,

tt ff d d d d

A naïve representation results in a storage overhead of () * logf n N

This can also be stored as 1 2 1 1; , ,...,
t tt f ff d d d d d

Copyright © 2000-2009 D.S.Weld
9

Each difference is called a d-gap. Since () ,d gaps N
each pointer requires fewer than

Trick is encoding …. since worst case ….

log N bits.

Assume d-gap representation for the rest of the talk, unless stated
otherwise

Slides adapted from Tapas Kanungo and David Mount, Univ Maryland

Text Compression
Two classes of text compression methods
• Symbolwise (or statistical) methods

– Estimate probabilities of symbols - modeling step
– Code one symbol at a time - coding step
– Use shorter code for the most likely symbol
– Usually based on either arithmetic or Huffman coding

• Dictionary methods

Copyright © 2000-2009 D.S.Weld
10

– Replace fragments of text with a single code word
– Typically an index to an entry in the dictionary.

• eg: Ziv-Lempel coding: replaces strings of characters with a pointer to
a previous occurrence of the string.

– No probability estimates needed

Symbolwise methods are more suited for coding d-gaps

Classifying d-gap Compression Methods:

• Global: each list compressed using same model
– non-parameterized: probability distribution for d-gap sizes is

predetermined.
– parameterized: probability distribution is adjusted according to

certain parameters of the collection.

Copyright © 2000-2009 D.S.Weld
11

• Local: model is adjusted according to some parameter,
like the frequency of the term

• By definition, local methods are parameterized.

Conclusion
• Local methods best

• Parameterized global models ~ non-parameterized
– Pointers not scattered randomly in file

• In practice, best index compression algorithm is:
– Local Bernoulli method (using Golomb coding)

C d i t d i di ll f t + ll th

Copyright © 2000-2009 D.S.Weld
12

• Compressed inverted indices usually faster+smaller than
– Signature files
– Bitmaps

Local < Parameterized Global < Non-parameterized Global

Not by much

3

CSE 454 - Case Studies

Design of Alta Vista

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 13

Based on a talk by Mike Burrows

AltaVista: Inverted Files
• Map each word to list of locations where it occurs
• Words = null-terminated byte strings
• Locations = 64 bit unsigned ints

– Layer above gives interpretation for location
• URL

I d i t t t if i d b

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 14

• Index into text specifying word number

• Slides adapted from talk by Mike Burrows

Documents
• A document is a region of location space

– Contiguous
– No overlap
– Densely allocated (first doc is location 1)

• All document structure encoded with words
dd t l t l ti f d t

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 15

– enddoc at last location of document
– begintitle, endtitle mark document title

0 1 2 3 4 5 6 7 8 ...

Document 1 Document 2 ...

Format of Inverted Files
• Words ordered lexicographically
• Each word followed by list of locations
• Common word prefixes are compressed
• Locations encoded as deltas

– Stored in as few bytes as possible
– 2 bytes is common

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 16

– 2 bytes is common
– Sneaky assembly code for operations on inverted files

• Pack deltas into aligned 64 bit word
• First byte contains continuation bits
• Table lookup on byte => no branch instructs, no mispredicts
• 35 parallelized instructions/ 64 bit word = 10 cycles/word

• Index ~ 10% of text size

Index Stream Readers (ISRs)
• Interface for

– Reading result of query
– Return ascending sequence of locations
– Implemented using lazy evaluation

• Methods
l (ISR) t t l ti

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 17

– loc(ISR) return current location
– next(ISR) advance to next location
– seek(ISR, X) advance to next loc after X
– prev(ISR) return previous location !

Processing Simple Queries
• User searches for “mp3”

• Open ISR on “mp3”
– Uses hash table to avoid scanning entire file

• Next(), next(), next()
– returns locations containing the word

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 18

g

4

Combining ISRs
• And Compare locs on two streams
• Or

fil ISR fil ISR fil ISR

• Or Merges two or more ISRs
• Not• Not Returns locations not in ISR (lazily)

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 19

file ISR file ISR file ISR

or ISR

and ISR

genesis fixx

mp3

Genesis OR fixx

(genesis OR fixx) AND mp3

What About File Boundaries?

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 20

ISR Constraint Solver
• Inputs:

– Set of ISRs: A, B, ...
– Set of Constraints

• Constraint Types
– loc(A) loc(B) + K
– prev(A) loc(B) + K

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 21

– loc(A) prev(B) + K
– prev(A) prev(B) + K

• For example: phrase “a b”
– loc(A) loc(B), loc(B) loc(A) + 1

a a b a a b a b

Two words on one page

• Let E be ISR for word enddoc
• Constraints for conjunction a AND b

– prev(E) loc(A)
– loc(A) loc(E)
– prev(E) loc(B)

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 22

p () ()
– loc(B) loc(E)

b a e b a b e b

prev(E)

loc(A)

loc(E)loc(B)

Advanced Search

• Field query: a in Title of page
• Let BT, ET be ISRP of words begintitle, endtitle
• Constraints:

– loc(BT) loc(A)
– loc(A) loc(ET)

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 23

loc(A) loc(ET)
– prev(ET) loc(BT)

et a bt a et a bt et

prev(ET)

loc(BT)
loc(A)

loc(ET)

Implementing the Solver

Constraint Types
– loc(A) loc(B) + K
– prev(A) loc(B) + K
– loc(A) prev(B) + K

prev(A) prev(B) + K

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 24

– prev(A) prev(B) + K

5

Remember: Index Stream Readers

• Methods
– loc(ISR) return current location
– next(ISR) advance to next location
– seek(ISR, X) advance to next loc after X

prev(ISR) return previous location

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 25

– prev(ISR) return previous location

Solver Algorithm

• To satisfy: loc(A) loc(B) + K
– Execute: seek(B, loc(A) - K)

while (unsatisfied_constraints)
satisfy_constraint(choose_unsat_constraint())

loc(ISR) return cur loc
next(ISR) adv to nxt loc

return it
seek(ISR, X) adv to nxt loc >

return it
prev(ISR) return pre loc

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 26

Solver Algorithm

• To satisfy: loc(A) loc(B) + K
– Execute: seek(B, loc(A) - K)

• To satisfy: prev(A) loc(B) + K

while (unsatisfied_constraints)
satisfy_constraint(choose_unsat_constraint())

loc(ISR) return cur loc
next(ISR) adv to nxt loc

return it
seek(ISR, X) adv to nxt loc >

return it
prev(ISR) return pre loc

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 27

To satisfy: prev(A) loc(B) + K
– Execute: seek(B, prev(A) - K)

a a b a a b a b
K

AB PA

K
b

Solver Algorithm

• To satisfy: loc(A) loc(B) + K
– Execute: seek(B, loc(A) - K)

• To satisfy: prev(A) loc(B) + K

while (unsatisfied_constraints)
satisfy_constraint(choose_unsat_constraint())

loc(ISR) return cur loc
next(ISR) adv to nxt loc

return it
seek(ISR, X) adv to nxt loc >

return it
prev(ISR) return pre loc

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 28

To satisfy: prev(A) loc(B) + K
– Execute: seek(B, prev(A) - K)

• To satisfy: loc(A) prev(B) + K
– Execute: seek(B, loc(A) - K),
– next(B)

a a b a a b a b
K

A BPB

b

Solver Algorithm

• To satisfy: loc(A) loc(B) + K
– Execute: seek(B, loc(A) - K)

• To satisfy: prev(A) loc(B) + K

while (unsatisfied_constraints)
satisfy_constraint(choose_unsat_constraint())

loc(ISR) return cur loc
next(ISR) adv to nxt loc

return it
seek(ISR, X) adv to nxt loc >

return it
prev(ISR) return pre loc

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 29

To satisfy: prev(A) loc(B) + K
– Execute: seek(B, prev(A) - K)

• To satisfy: loc(A) prev(B) + K
– Execute: seek(B, loc(A) - K),
– next(B)

• To satisfy: prev(A) prev(B) + K
– Execute: seek(B, prev(A) - K)
– next(B)

Solver Algorithm

• To satisfy: loc(A) loc(B) + K
– Execute: seek(B, loc(A) - K)

• To satisfy: prev(A) loc(B) + K

while (unsatisfied_constraints)
satisfy_constraint(choose_unsat_constraint())

Heuristic:
Which choice
advances a
stream the
furthest?

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 30

To satisfy: prev(A) loc(B) + K
– Execute: seek(B, prev(A) - K)

• To satisfy: loc(A) prev(B) + K
– Execute: seek(B, loc(A) - K),
– next(B)

• To satisfy: prev(A) prev(B) + K
– Execute: seek(B, prev(A) - K)
– next(B)

6

Update

• Can’t insert in the middle of an inverted file
• Must rewrite the entire file

– Naïve approach: need space for two copies
– Slow since file is huge

• Split data along two dimensions

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 31

Split data along two dimensions
– Buckets solve disk space problem
– Tiers alleviate small update problem

Buckets & Tiers

• Each word is hashed to a bucket
• Add new documents by adding a new tier

– Periodically merge tiers, bucket by bucket

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 32

Hash bucket(s) for word a

Hash bucket(s) for word b

Hash bucket(s) for word zebra

. . .

. . .

older newer
bigger smaller

What if Word Removed from Doc?
• Delete documents by adding deleted word

• Expunge deletions when merging tier 1
a

deleted

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 33

Hash bucket(s) for word b

Hash bucket(s) for deleted

. . .

. . .

older newer
bigger smaller

Scaling
• How handle huge traffic?

– AltaVista Search ranked #16
– 10,674,000 unique visitors (Dec’99)

• Scale across N hosts
1. Ubiquitous index. Query one host
2 S lit N Q ll lt

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 34

2. Split N ways. Query all, merge results
3. Ubiquitous index. Host handles subrange of locations.

Query all, merge results
4. Hybrids

• Front ends
– Alpha workstations

• Back ends
– 4-10 CPU Alpha servers

• 8GB RAM, 150GB disk
– Organized in groups of 4-10 machines

• Each with 1/Nth of index

AltaVista Structure

Back end

Copyright © 2000-2009 D.S.Weld10/21/2010 5:30 PM 35

index
serversFDDI

switch
FDDI
switch

To alternate
site

Border
routers

Front end
HTTP servers

