
1

CSE 454

Infrmation Retrieval & Indexing

Class Overview

Other Cool Stuff

Network Layer
Crawling

IR - Ranking
Indexing

Query processing
Oth r oo Stuff

Content Analysis

A Closeup View

10/19 – IR & Indexing

10/21 – Google & Alta
VistaVista

10/26 – Pagerank

Standard Web Search Engine Architecture

crawl the
web

create an
inverted

store documents,
check for duplicates,

extract links

DocIds

user
index

inverted
index

Slide adapted from Marti Hearst / UC Berkeley]

Search
engine
servers

user
query

show results
To user

Relevance

• Complex concept that has been studied for
some time
– Many factors to consider

People often disagree when making relevance– People often disagree when making relevance
judgments

• Retrieval models make various assumptions
about relevance to simplify problem
– e.g., topical vs. user relevance

– e.g., binary vs. multi-valued relevance
from Croft, Metzler,

Strohman. © Addison Wesley

Retrieval Model Overview

• Older models
– Boolean retrieval
– Overlap Measures
– Vector Space model

• Probabilistic Models
– BM25
– Language models

• Combining evidence
– Inference networks
– Learning to Rank

from Croft, Metzler,
Strohman. © Addison Wesley

2

Test Corpora

slide from Raghavan, Schütze, Larson

Standard Benchmarks

• National Institute of Standards +Testing (NIST)
– Has run large IR testbed for many years (TREC)

• Reuters and other benchmark sets used

• “Retrieval tasks” specified
– sometimes as queries

• Human experts mark, for each query and for
each doc, “Relevant” or “Not relevant”
– or at least for subset that some system returned

slide from Raghavan, Schütze, Larson

Precision + Recall
• Precision: fraction of retrieved docs that are

relevant = P(relevant|retrieved)

• Recall: fraction of relevant docs that are
retrieved = P(retrieved|relevant)

• Precision P = tp/(tp + fp)

• Recall R = tp/(tp + fn)

Relevant Not Relevant

Retrieved tp fp

Not Retrieved fn tn

slide from Raghavan, Schütze, Larson

Precision & Recall

Precision

Proportion of selected
items that are correct

tn

fp tp fn

Actual relevant docs
fptp

tp



Recall
% of target items that

were selected

Precision-Recall curve
Shows tradeoff

System returned these
fntp

tp



Recall

Precision

Precision/Recall

• Can get high recall (but low precision)
– Retrieve all docs on all queries!

• Recall is a non-decreasing function of the
number of docs retrieved

Precision usually decreases (in a good system)– Precision usually decreases (in a good system)

• Difficulties in using precision/recall
– Binary relevance

– Should average over large corpus/query ensembles

– Need human relevance judgements

– Heavily skewed by corpus/authorship

slide from Raghavan, Schütze, Larson

Precision-Recall Curves
• May return any # of results ordered by similarity

• By varying numbers of docs (levels of recall)
– Produce a precision-recall curve

slide from Raghavan, Schütze, Larson

Q1

Q2

3

A combined measure: F

• Combined measure assessing tradeoff is
F measure (weighted harmonic mean):

PR
F




2

2)1(
11

1




• People usually use balanced F1 measure
– i.e., with  = 1 or  = ½

• Harmonic mean is conservative average
– See CJ van Rijsbergen, Information Retrieval

RP
RP


21

)1(
1 

slide from Raghavan, Schütze, Larson

Other Measures

• Precision at fixed recall
– This is perhaps the most appropriate thing for web

search: all people want to know is how many good
matches there are in the first one or two pages of
results

• 11-point interpolated average precision
– The standard measure in the TREC competitions:

Take the precision at 11 levels of recall varying
from 0 to 1 by tenths of the documents, using
interpolation (the value for 0 is always
interpolated!), and average them

slide from Raghavan, Schütze, Larson

Boolean Retrieval

• Two possible outcomes for query processing
– TRUE and FALSE

– “exact-match” retrieval

– simplest form of rankingp g

• Query specified w/ Boolean operators
– AND, OR, NOT

– proximity operators also used

from Croft, Metzler,
Strohman. © Addison Wesley

Query

• Which plays of Shakespeare contain the
words Brutus AND Caesar but NOT
Calpurnia?

slide from Raghavan, Schütze, Larson

Term-document incidence

Tempest Hamlet Othello Macbeth
Antony 0 0 0 1
Brutus 0 1 0 0
Caesar 0 1 1 1

Calpurnia 0 0 0 0

1 if play contains word, 0
otherwise

Calpurnia 0 0 0 0
Cleopatra 0 0 0 0

mercy 1 1 1 1
worser 1 1 1 0

slide from Raghavan, Schütze, Larson

Booleans over Incidence Vectors

• So we have a 0/1 vector for each term.

• To answer query: take the vectors for
Brutus, Caesar and Calpurnia
(complemented)  bitwise AND.

• 110100 AND 110111 AND 101111 = 100100.

slide from Raghavan, Schütze, Larson

4

Boolean Retrieval
• Advantages

– Results are predictable, relatively easy to explain
– Many different features can be incorporated
– Efficient processing since many documents can be

eliminated from search
• Disadvantages

– Effectiveness depends entirely on user
– Simple queries usually don’t work well
– Complex queries are difficult

from Croft, Metzler,
Strohman. © Addison Wesley

Interlude
• Better Models Coming Soon:

– Vector Space model
– Probabilistic Models

• BM25
• Language models

• Shared Issues – What to Index
– Punctuation
– Case Folding
– Stemming
– Stop Words
– Spelling
– Numbers

Issues in what to index

Cooper’s concordance of Wordsworth was published in
1911. The applications of full-text retrieval are legion:
they include résumé scanning, litigation support and
searching published journals on line

• Cooper’s vs. Cooper vs. Coopers.

• Full-text vs. full text vs. {full, text} vs. fulltext.

• résumé vs. resume.

searching published journals on-line.

slide from Raghavan, Schütze, Larson

Punctuation
• Ne’er: use language-specific, handcrafted

“locale” to normalize.

• State-of-the-art: break up hyphenated sequence.

• U.S.A. vs. USA - use locale.

• a out• a.out

slide from Raghavan, Schütze, Larson

Numbers
• 3/12/91

• Mar. 12, 1991

• 55 B.C.

• B-52

100 2 86 144• 100.2.86.144
– Generally, don’t index as text

– Creation dates for docs

slide from Raghavan, Schütze, Larson

Case folding
• Reduce all letters to lower case

• Exception: upper case in mid-sentence
– e.g., General Motors

– Fed vs. fed

– SAIL vs. sail

slide from Raghavan, Schütze, Larson

5

Thesauri and Soundex

• Handle synonyms and homonyms
– Hand-constructed equivalence classes

• e.g., car = automobile

≠ ’• your ≠ you’re

• Index such equivalences?

• Or expand query?

slide from Raghavan, Schütze, Larson

Spell Correction
• Look for all words within (say) edit distance 3

(Insert/Delete/Replace) at query time
– e.g., Alanis Morisette

• Spell correction is expensive and slows the query
(up to a factor of 100)(p)
– Invoke only when index returns zero matches?

– What if docs contain mis-spellings?

slide from Raghavan, Schütze, Larson

Lemmatization
• Reduce inflectional/variant forms to base form

– am, are, is  be

– car, cars, car's, cars'  car

the boy's cars are different colors


the boy car be different color

slide from Raghavan, Schütze, Larson

Stemming
• Reduce terms to their “roots” before indexing

– language dependent

– e.g., automate(s), automatic, automation all reduced to
automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compres and
compres are both accept
as equival to compres.

slide from Raghavan, Schütze, Larson

Porter’s algorithm

• Common algorithm for stemming English

• Conventions + 5 phases of reductions
– phases applied sequentially

– each phase consists of a set of commands

– sample convention: Of the rules in a compound
command, select the one that applies to the longest
suffix.

• Porter’s stemmer available:
http//www.sims.berkeley.edu/~hearst/irbook/porter.html

slide from Raghavan, Schütze, Larson

Typical rules in Porter

• sses  ss

• ies  i

• ational  ate

• tional  tion• tional  tion

slide from Raghavan, Schütze, Larson

6

Challenges

• Sandy

• Sanded  Sand ???

• Sander

slide from Raghavan, Schütze, Larson

Beyond Term Search
• Phrases?

• Proximity: Find Gates NEAR Microsoft.
– Index must capture position info in docs.

• Zones in documents: Find documents with
(author = Ullman) AND (text contains automata).

slide from Raghavan, Schütze, Larson

Ranking search results
• Boolean queries give inclusion or exclusion of docs.

• Need to measure proximity from query to each doc.

• Whether docs presented to user are singletons, or a p g ,
group of docs covering various aspects of the query.

slide from Raghavan, Schütze, Larson

Ranking models in IR
• Key idea:

– We wish to return in order the documents most likely to
be useful to the searcher

• To do this, we want to know which documents
best satisfy a query
– An obvious idea is that if a document talks about a topic

more then it is a better match

• A query should then just specify terms that are
relevant to the information need, without
requiring that all of them must be present
– Document relevant if it has a lot of the terms

slide from Raghavan, Schütze, Larson

Retrieval Model Overview

• Older models
– Boolean retrieval
– Overlap Measures
– Vector Space model

• Probabilistic Models
– BM25
– Language models

• Combining evidence
– Inference networks
– Learning to Rank

from Croft, Metzler,
Strohman. © Addison Wesley

Binary term presence matrices
• Record whether a document contains a word:

document is binary vector in {0,1}v
• Idea: Query satisfaction = overlap measure:

YX 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

YX 

slide from Raghavan, Schütze, Larson

7

Overlap matching

• What are the problems with the overlap
measure?

• It doesn’t consider:
– Term frequency in document

– Term scarcity in collection
• (How many documents mention term?)

– Length of documents

slide from Raghavan, Schütze, Larson

Many Overlap Measures

||

||||

||
2

||

DQ

DQ

DQ

DQ





 Simple matching (coordination level match)

Dice’s Coefficient

|)||,min(|

||

||||

||

||
||

2
1

2
1

DQ

DQ

DQ

DQ

DQ
DQ








Jaccard’s Coefficient

Cosine Coefficient

Overlap Coefficient

slide from Raghavan, Schütze, Larson

Documents as vectors
• Each doc j can be viewed as a vector of tf values,

one component for each term

• So we have a vector space
– terms are axes

– docs live in this spacep

– even with stemming, may have 20,000+ dimensions

• (The corpus of documents gives us a matrix,
which we could also view as a vector space in
which words live – transposable data)

slide from Raghavan, Schütze, Larson

Vector Space Representation

Documents that are close to query
(measured using vector-space metric)

=> returned first.

Query

slide from Raghavan, Schütze, Larson

TF x IDF

)/log(* kikik nNtfw 

DdocumentinTtermoffrequencytf

D document in k termT ik 

C in T term of frequency document inverse idf

D documentin T term of frequencytf

kk

ikik











n
Nidf

k
k log

kk T contain that C indocuments of number then

C collection the indocuments of number total N




slide from Raghavan, Schütze, Larson

BM25
Popular and effective ranking algorithm
based on binary independence model
– adds document and query term weights

– N = number of doc, ni = num containing term I
– R, ri = encode relevance info (if avail, otherwise = 0)
– fi = freq of term I in doc; qfi = freq in doc
– k1, k2 and K are parameters, values set empirically

• k1 weights tf component as fi increases
• k2 = weights query term weight
• K normalizes

adapted from Croft, Metzler,
Strohman. © Addison Wesley

8

Simple Formulas

But How Process Efficiently?

43Copyright © Weld 2002-2007

Thinking about Efficiency
• Clock cycle: 4 GHz

– Typically completes 2 instructions / cycle
• ~10 cycles / instruction, but pipelining & parallel execution

– Thus: 8 billion instructions / sec

• Disk access: 1-10ms

44

– Depends on seek distance, published average is 5ms
– Thus perform 200 seeks / sec
– (And we are ignoring rotation and transfer times)

• Disk is 40 Million times slower !!!

Copyright © Weld 2002-2007

Retrieval

Document-term matrix

t1 t2 . . . tj . . . tm nf

d1 w11 w12 . . . w1j . . . w1m 1/|d1|
d2 w21 w22 . . . w2j . . . w2m 1/|d2|

.

45

di wi1 wi2 . . . wij . . . wim 1/|di|
.

dn wn1 wn2 . . . wnj . . . wnm 1/|dn|

wij is the weight of term tj in document di

Most wij’s will be zero.
Copyright © Weld 2002-2007

Naïve Retrieval

Consider query Q = (q1, q2, …, qj, …, qn), nf = 1/|q|.

How evaluate Q?
(i.e., compute the similarity between q and every document)?

Method 1: Compare Q with every doc.

Document data structure

46

Document data structure:

di : ((t1, wi1), (t2, wi2), . . ., (tj, wij), . . ., (tm, wim), 1/|di|)

– Only terms with positive weights are kept.

– Terms are in alphabetic order.

Query data structure:
Q : ((t1, q1), (t2, q2), . . ., (tj, qj), . . ., (tm, qm), 1/|q|)

Copyright © Weld 2002-2007

Naïve Retrieval (continued)

Method 1: Compare q with documents directly

initialize all sim(q, di) = 0;

for each document di (i = 1, …, n)

{ for each term tj (j = 1, …, m)

47

if tj appears in both q and di

sim(q, di) += qj wij;

sim(q, di) = sim(q, di) (1/|q|) (1/|di|); }

sort documents in descending similarities;

display the top k to the user;

Copyright © Weld 2002-2007

Observation

• Method 1 is not efficient
– Needs to access most non-zero entries in doc-term matrix.

• Solution: Use Index (Inverted File)
– Data structure to permit fast searching.

Lik I d i th b k f t t b k

48

• Like an Index in the back of a text book.
– Key words --- page numbers.

– E.g, “Etzioni, 40, 55, 60-63, 89, 220”

– Lexicon

– Occurrences

Copyright © Weld 2002-2007

9

Search Processing (Overview)
1. Lexicon search

– E.g. looking in index to find entry

2. Retrieval of occurrences
– Seeing where term occurs

3. Manipulation of occurrences

49

3. Manipulation of occurrences
– Going to the right page

Copyright © Weld 2002-2007

Simple Index for One Document

A file is a list of words by position
First entry is the word in position 1 (first word)
Entry 4562 is the word in position 4562 (4562nd word)
Last entry is the last word
An inverted file is a list of positions by word!

POS
1

10

20

30

36

FILE

50

a (1, 4, 40)
entry (11, 20, 31)
file (2, 38)
list (5, 41)
position (9, 16, 26)
positions (44)
word (14, 19, 24, 29, 35, 45)
words (7)
4562 (21, 27)

INVERTED FILE

aka “Index”

Copyright © Weld 2002-2007

Requirements for Search
• Need index structure

– Must handle multiple documents

– Must support phrase queries

– Must encode TF/IDF values

– Must minimize disk seeks & reads

Copyright © Weld 2002-2007 51

a (1, 4, 40)
entry (11, 20, 31)
file (2, 38)
list (5, 41)
position (9, 16, 26)
positions (44)

t1 t2 … tm

d1 w11 w12 … w1m
d2 w21 w22 … w2m

…
dn wn1 wn2 …wnm

a (1, 4, 40)
entry (11, 20, 31)
file (2, 38)
list (5, 41)
position (9, 16, 26)
positions (44)

a (1, 4, 40)
entry (11, 20, 31)
file (2, 38)
list (5, 41)
position (9, 16, 26)
positions (44)

a (1, 4, 40)
entry (11, 20, 31)
file (2, 38)
list (5, 41)
position (9, 16, 26)
positions (44)

+

Index Size over Time

Now >> 50 Billion Pages
52

Copyright © Weld 2002-2007

How Store Index?

a
aa
add
and
…

…
docID # pos1, …

…

Lexicon Occurrence List

Oracle Database?

Unix File System?

The Solution
• Inverted Files for Multiple Documents

– Broken into Two Files
• Lexicon

– Hashtable on disk (one read)
– Nowadays: stored in main memory

• Occurrence List• Occurrence List
– Stored on Disk
– “Google Filesystem”

Copyright © Weld 2002-2007 54

a
aa
add
and
…

…
docID # pos1, …

…

Lexicon Occurrence List

10

Inverted Files for Multiple Documents

WORD NDOCS PTR

jezebel 20

jezer 3

jezerit 1

jeziah 1

jeziel 1

34 6 1 118 2087 3922 3981 5002
44 3 215 2291 3010
56 4 5 22 134 992

DOCID OCCUR POS 1 POS 2 . . .

566 3 203 245 287

“jezebel” occurs
6 times in document 34,
3 times in document 44,
4 times in document 56 . . .

LEXICON

OCCURENCE

…

55

107 4 322 354 381 405
232 6 15 195 248 1897 1951 2192
677 1 481
713 3 42 312 802

jeziel 1

jezliah 1

jezoar 1

jezrahliah 1

jezreel 39
jezoar

67 1 132

. . .
OCCURENCE

INDEX

• One method. Alta Vista uses alternative
Copyright © Weld 2002-2007

Many Variations Possible

• Address space (flat, hierarchical)

• Record term-position information

• Precalculate TF-IDF info

• Stored header, font & tag info

56

• Compression strategies

Copyright © Weld 2002-2007

Other Features Stored in Index
• Page Rank

• Query word in color on page?

• # images on page

• # outlinks on page

• URL length

• Page Classifiers (20+)
– Spam

– Adult

– Actor

– Celebrity

– Athlete
• Page edit recency

Athlete

– Product / review

– Tech company

– Church

– Homepage

– ….

Amit Singhai says Google uses over 200 such features
[NY Times 2008-06-03]

Using Inverted Files

Some data structures:

Lexicon: a hash table for all terms in the collection.

.

58

tj pointer to I(tj)
.

– Inverted file lists previously stored on disk.

– Now fit in main memory

Copyright © Weld 2002-2007

The Lexicon

• Grows Slowly (Heap’s law)
– O(n) where n=text size;  is constant ~0.4 – 0.6

E g for 1GB corpus lexicon = 5Mb

59

– E.g. for 1GB corpus, lexicon = 5Mb

– Can reduce with stemming (Porter algorithm)

• Store lexicon in file in lexicographic order
– Each entry points to loc in occurrence file

(aka inverted file list)

Copyright © Weld 2002-2007

Using Inverted Files

Several data structures:

2. For each term tj, create a list (occurrence file list)
that contains all document ids that have tj.

I(tj) = { (d1, w1j),

(d

60

(d2, …

… }

– di is the document id number of the ith document.

– Weights come from freq of term in doc

– Only entries with non-zero weights are kept.

Copyright © Weld 2002-2007

11

More Elaborate Inverted File

Several data structures:

2. For each term tj, create a list (occurrence file list)
that contains all document ids that have tj.

I(tj) = { (d1, freq, pos1, … posk),

(d

61

(d2, …

… }

– di is the document id number of the ith document.

– Weights come from freq of term in doc

– Only entries with non-zero weights are kept.

Copyright © Weld 2002-2007

Inverted files continued

More data structures:

3. Normalization factors of documents are pre-
computed and stored similarly to lexicon

62

nf[i] stores 1/|di|.

Copyright © Weld 2002-2007

Retrieval Using Inverted Files

initialize all sim(q, di) = 0

for each term tj in q

find I(t) using the hash table

for each (di, wij) in I(t)

63

sim(q, di) += qj wij

for each (relevant) document di

sim(q, di) = sim(q, di)  nf[i]

sort documents in descending similarities
and display the top k to the user;

Copyright © Weld 2002-2007

Observations about Method 2
• If doc d doesn’t contain any term of query q,

then d won’t be considered when evaluating q.

• Only non-zero entries in the columns of the
document-term matrix which correspond to query

64

p q y
terms … are used to evaluate the query.

• Computes the similarities of multiple documents
simultaneously (w.r.t. each query word)

Copyright © Weld 2002-2007

Efficient Retrieval

Example (Method 2): Suppose

q = { (t1, 1), (t3, 1) }, 1/|q| = 0.7071

d1 = { (t1, 2), (t2, 1), (t3, 1) }, nf[1] = 0.4082

d2 = { (t2, 2), (t3, 1), (t4, 1) }, nf[2] = 0.4082

d3 = { (t1, 1), (t3, 1), (t4, 1) }, nf[3] = 0.5774

65

{ (,), (,), (,) }, []

d4 = { (t1, 2), (t2, 1), (t3, 2), (t4, 2) }, nf[4] = 0.2774

d5 = { (t2, 2), (t4, 1), (t5, 2) }, nf[5] = 0.3333

I(t1) = { (d1, 2), (d3, 1), (d4, 2) }

I(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5, 2) }

I(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4, 2) }

I(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5, 1) }

I(t5) = { (d5, 2) }

Copyright © Weld 2002-2007

Efficient Retrieval q = { (t1, 1), (t3, 1) }, 1/|q| = 0.7071

d1 = { (t1, 2), (t2, 1), (t3, 1) }, nf[1] = 0.4082
d2 = { (t2, 2), (t3, 1), (t4, 1) }, nf[2] = 0.4082
d3 = { (t1, 1), (t3, 1), (t4, 1) }, nf[3] = 0.5774
d4 = { (t1, 2), (t2, 1), (t3, 2), (t4, 2) }, nf[4] = 0.2774
d5 = { (t2, 2), (t4, 1), (t5, 2) }, nf[5] = 0.3333

I(t1) = { (d1, 2), (d3, 1), (d4, 2) }
I(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5, 2) }
I(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4, 2) }
I(t4) = { (d2 1) (d3 1) (d4 1) (d5 1) }

After t1 is processed:
sim(q, d1) = 2, sim(q, d2) = 0,
sim(q, d3) = 1
sim(q d4) = 2 sim(q d5) = 0

66

I(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5, 1) }
I(t5) = { (d5, 2) }

sim(q, d4) = 2, sim(q, d5) = 0
After t3 is processed:

sim(q, d1) = 3, sim(q, d2) = 1,
sim(q, d3) = 2
sim(q, d4) = 4, sim(q, d5) = 0

After normalization:
sim(q, d1) = .87, sim(q, d2) = .29,
sim(q, d3) = .82
sim(q, d4) = .78, sim(q, d5) = 0

Copyright © Weld 2002-2007

12

Efficiency versus Flexibility

• Storing computed document weights is good
for efficiency, but bad for flexibility.

– Recomputation needed if TF and IDF formulas
change and/or TF and DF information changes.

67

• Flexibility improved by storing raw TF, DF
information, but efficiency suffers.

• A compromise
– Store pre-computed TF weights of documents.

– Use IDF weights with query term TF weights
instead of document term TF weights.

Copyright © Weld 2002-2007

How Inverted Files are Created

Crawler Repository Scan Forward
Index

NF

ptrs
to

docs

68

Sort

Sorted
Index

Scan

(docs)

Lexicon

Inverted
File
List

docs

Copyright © Weld 2002-2007

Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
Index

Scan

NF
(docs)

Lexicon

Inverted
File
List

Repository

ptrs
to

docs

69

• File containing all documents downloaded
• Each doc has unique ID
• Ptr file maps from IDs to start of doc in repository

Copyright © Weld 2002-2007

Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
Index

Scan

NF
(docs)

Lexicon

Inverted
File
List

ptrs
to

docs

NF ~ Length of each document

70

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2

Forward Index Pos
1
2
3
4
5
6
7

Copyright © Weld 2002-2007

Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
Index

Scan

NF
(docs)

Lexicon

Inverted
File
List

ptrs
to

docs

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1

71

enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sorted Index

(positional info as well)

Copyright © Weld 2002-2007

Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
Index

Scan

NF
(docs)

Lexicon

Inverted
File
List

WORD NDOCS PTR

j b l 20 34 6 1 118 2087 3922 3981 5002

DOCID OCCUR POS 1 POS 2 . . .

ptrs
to

docs

Lexicon

72

jezebel 20

jezer 3

jezerit 1

jeziah 1

jeziel 1

jezliah 1

jezoar 1

jezrahliah 1

jezreel 39
jezoar

34 6 1 118 2087 3922 3981 5002
44 3 215 2291 3010
56 4 5 22 134 992

566 3 203 245 287

67 1 132

. . .
Inverted File List

Copyright © Weld 2002-2007

13

Lexicon Construction

• Build Trie (or hash table)

1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

letters: 60

73

letters: 60

text: 11, 19

words: 33, 40

made: 50

many: 28

l

m a
d

n
t

w

Copyright © Weld 2002-2007

Memory Too Small?

1-2

1-4

3-4

74

1 2 3 4

• Merging
– When word is shared in two lexicons
– Concatenate occurrence lists
– O(n1 + n2)

• Overall complexity
– O(n log(n/M)

Copyright © Weld 2002-2007

Stop lists
• Language-based stop list:

– words that bear little meaning
– 20-500 words
– http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

• Subject-dependent stop lists
• Removing stop words

75

• Removing stop words
– From document
– From query

From Peter Brusilovsky Univ Pittsburg INFSCI 2140

Copyright © Weld 2002-2007

Stemming
• Are there different index terms?

– retrieve, retrieving, retrieval, retrieved, retrieves…

• Stemming algorithm:
– (retrieve, retrieving, retrieval, retrieved, retrieves) 

retriev

76

– Strips prefixes of suffixes (-s, -ed, -ly, -ness)

– Morphological stemming

Copyright © Weld 2002-2007

Stemming Continued
• Can reduce vocabulary by ~ 1/3
• C, Java, Perl versions, python, c#

www.tartarus.org/~martin/PorterStemmer
• Criterion for removing a suffix

– Does "a document is about w1" mean the same as
– a "a document about w2"

77

• Problems: sand / sander & wand / wander

• Commercial SEs use giant in-memory tables

Copyright © Weld 2002-2007

Compression
• What Should We Compress?

– Repository
– Lexicon
– Inv Index

• What properties do we want?
– Compression ratio

78

– Compression speed
– Decompression speed
– Memory requirements
– Pattern matching on compressed text
– Random access

Copyright © Weld 2002-2007

14

Inverted File Compression

Each inverted list has the form
1 2 3 ; , , , ... ,

tt ff d d d d 

A naïve representation results in a storage overhead of () * logf n N  

This can also be stored as 1 2 1 1; , ,...,
t tt f ff d d d d d    

79

Each difference is called a d-gap. Since () ,d gaps N 
each pointer requires fewer than

Trick is encoding …. since worst case ….

log N  bits.

Assume d-gap representation for the rest of the talk, unless stated
otherwise

Slides adapted from Tapas Kanungo and David Mount, Univ Maryland

Copyright © Weld 2002-2007

Text Compression
Two classes of text compression methods
• Symbolwise (or statistical) methods

– Estimate probabilities of symbols - modeling step
– Code one symbol at a time - coding step
– Use shorter code for the most likely symbol
– Usually based on either arithmetic or Huffman coding

Di i h d

80

• Dictionary methods
– Replace fragments of text with a single code word
– Typically an index to an entry in the dictionary.

• eg: Ziv-Lempel coding: replaces strings of characters with a pointer to
a previous occurrence of the string.

– No probability estimates needed

Symbolwise methods are more suited for coding d-gaps

Copyright © Weld 2002-2007

Classifying d-gap Compression Methods:

• Global: each list compressed using same model
– non-parameterized: probability distribution for d-gap sizes is

predetermined.

– parameterized: probability distribution is adjusted according to
certain parameters of the collection

81

certain parameters of the collection.

• Local: model is adjusted according to some parameter,
like the frequency of the term

• By definition, local methods are parameterized.

Copyright © Weld 2002-2007

Conclusion
• Local methods best

• Parameterized global models ~ non-parameterized
– Pointers not scattered randomly in file

• In practice, best index compression algorithm is:

– Local Bernoulli method (using Golomb coding)

82

– Local Bernoulli method (using Golomb coding)
• Compressed inverted indices usually faster+smaller than

– Signature files
– Bitmaps

Local < Parameterized Global < Non-parameterized Global

Not by much

Copyright © Weld 2002-2007

