CSE 454

Infrmation Retrieval & Indexing

Class Overview

Other Cool Stuff
Query processing
Indexing
IR - Ranking

10/19 - IR & Indexing

10/21 - Google & Alta |
Vista

10/26 - Pagerank

A Closeup View

Standard Web Search Engine Architecture

store documents,
check for duplicates,

' extract links

/

gy] i I Search
- - S| grw results engine |+
] OUEET servers

Py

|
(i

create an
inverted
index

inverted
index

/

Relevance

e Complex concept that has been studied for

some time
— Many factors to consider

— People often disagree when making relevance

judgments

¢ Retrieval models make various assumptions
about relevance to simplify problem

- e.g., topical vs. user relevance

- e.g., binary vs. multi-valued relevance

from Croft, Metzler,

Strohman. © Addison Wesley

Retrieval Model Overview

e Older models
— Boolean retrieval
— Overlap Measures
— Vector Space model
¢ Probabilistic Models
- BM25
- Language models
e Combining evidence

— Learning to Rank

from Croft, Metzler,
Strohman._© Addison Wesley

Test Corpora

TABLE 4.3 Comanon Test Coapora

Collction | NDoes | Moo | Size (MB) | TormiDoe | 0D Reldss
ADI 82 335

AIT 2109 14 2 400 =10,000
CACM 3204 | 64 2 245

15l 60 | 112 2 65

CracSeld 1400 | 228 2 531

LISA sgrz | 3 3

Medkze 1033 30 1

HPL 11420 3 3

OSHMED | 348566 | 106 400 250 16,140
Reutees 21578 | 672 = 131

TREC TA0,000 | 20D 2000 89.3543 » 100,000

slide from Raghavan, Schiitze, Larson

Standard Benchmarks

» National Institute of Standards +Testing (NIST)
— Has run large IR testbed for many years (TREC)

» Reuters and other benchmark sets used

» “Retrieval tasks” specified
— sometimes as queries

* Human experts mark, for each query and for
each doc, “Relevant” or “Not relevant”
— or at least for subset that some system returned

slide from Raghavan, Schiitze, Larson

Precision + Recall
¢ Precision: fraction of retrieved docs that are
relevant = P(relevant|retrieved)

» Recall: fraction of relevant docs that are
retrieved = P(retrieved|relevant)

Relevant Not Relevant
Retrieved tp fp
Not Retrieved | fn tn

 Precision P = tp/(tp + fp)
e Recall R =tp/(tp +fn)

slide from Raghavan, Schiitze, Larson

Precision & Recall

Precision
Actual relevant docs
T+ o> tn
Proportion of selected 7N \/
items that are correct Lol tp | fy
i -

Recall P+ f>

System returned these
% of target items that

were selected Precision
Precision-Recall curve K

Shows tradeoff Recall

Precision/Recall

 Can get high recall (but low precision)
— Retrieve all docs on all queries!
 Recall is a non-decreasing function of the
number of docs retrieved
— Precision usually decreases (in a good system)
« Difficulties in using precision/recall
— Binary relevance
— Should average over large corpus/query ensembles
— Need human relevance judgements
— Heavily skewed by corpus/authorship

slide from Raghavan, Schiitze, Larson

Precision-Recall Curves

e May return any # of results ordered by similarity
« By varying numbers of docs (levels of recall)

— Produce a precision-recall curve

1

Precision

Recall

slide from Raghavan, Schiitze, Larson

A combined measure: F

e Combined measure assessing tradeoff is
F measure (weighted harmonic mean):

1 _(B*+1)PR
~ BPP+R

F=

1 1

a—+{1-a)=

P R

* People usually use balanced F, measure
- le,withp=lora=%

* Harmonic mean is conservative average

— See CJ van Rijsbergen, Information Retrieval

slide from Raghavan, Schiitze, Larson

Other Measures

* Precision at fixed recall

— This is perhaps the most appropriate thing for web
search: all people want to know is how many good
matches there are in the first one or two pages of
results

» 11-point interpolated average precision

— The standard measure in the TREC competitions:
Take the precision at 11 levels of recall varying
from 0 to 1 by tenths of the documents, using
interpolation (the value for 0 is always
interpolated!), and average them

slide from Raghavan, Schiitze, Larson

Boolean Retrieval

» Two possible outcomes for query processing
— TRUE and FALSE
— “exact-match” retrieval
— simplest form of ranking
* Query specified w/ Boolean operators
— AND, OR, NOT
— proximity operators also used

from Croft, Metzler,

Strohman._© Addison Wesley

Query

» Which plays of Shakespeare contain the
words Brutus AND Caesar but NOT
Calpurnia?

slide from Raghavan, Schiitze, Larson

Term-document incidence

Tempest Hamlet Othello Macbeth
Antony 0 0 0 1
Brutus 0 1 0 0
Caesar 0 1 1 1
Calpurnia 0 0 0 0
Cleopatra 0 0 0
mercy 1 1 1 1
worser 1 1 1 0

1 if play contains word, 0
otherwise
slide from Raghavan, Schiitze, Larson

Booleans over Incidence VVectors

» So we have a 0/1 vector for each term.
» To answer query: take the vectors for
Brutus, Caesar and Calpurnia

(complemented) =» bitwise AND.

» 110100 AND 110111 AND 101111 = 100100.

slide from Raghavan, Schiitze, Larson

Boolean Retrieval
» Advantages
— Results are predictable, relatively easy to explain
— Many different features can be incorporated

— Efficient processing since many documents can be
eliminated from search

 Disadvantages
— Effectiveness depends entirely on user
— Simple queries usually don’t work well
— Complex queries are difficult

from Croft, Metzler,
Strohman. _© Addison Wesley

Interlude

 Better Models Coming Soon:
— Vector Space model
— Probabilistic Models
+ BM25
« Language models

e Shared Issues — What to Index
— Punctuation
— Case Folding
— Stemming
— Stop Words
— Spelling
— Numbers

Issues in what to index

Cooper’s concordance of Wordsworth was published in

1911. The applications of full-text retrieval are legion:

they include résumé scanning, litigation support and
searching publisf@ﬂ‘W‘ |

e Cooper’s vs. Cooper vs. Coopers.

o Full-text vs. full text vs. {full, text} vs. fulltext.
* résumé vs. resume.

slide from Raghavan, Schiitze, Larson

Punctuation

Ne’er: use language-specific, handcrafted
“locale” to normalize.

State-of-the-art. break up hyphenated sequence.
U.S.A. vs. USA - use locale.

* a.out

slide from Raghavan, Schiitze, Larson

Numbers
3/12/91
Mar. 12, 1991
55 B.C.
B-52
100.2.86.144

— Generally, don’t index as text
— Creation dates for docs

slide from Raghavan, Schiitze, Larson

Case folding

* Reduce all letters to lower case
« Exception: upper case in mid-sentence

- e.9., General Motors
— Fed vs. fed
— SAIL vs. sail

slide from Raghavan, Schiitze, Larson

Thesauri and Soundex

¢ Handle synonyms and homonyms
— Hand-constructed equivalence classes

* e.g., car = automobile
* your # you’re

¢ Index such equivalences?
¢ Or expand query?

slide from Raghavan, Schiitze, Larson

Spell Correction
« Look for all words within (say) edit distance 3
(Insert/Delete/Replace) at query time
— e.9., Alanis Morisette
 Spell correction is expensive and slows the query
(up to a factor of 100)
— Invoke only when index returns zero matches?
— What if docs contain mis-spellings?

slide from Raghavan, Schiitze, Larson

Lemmatization
¢ Reduce inflectional/variant forms to base form

—am, are, is — be
— car, cars, car's, cars' — car

the boy's cars are different colors
_)
the boy car be different color

slide from Raghavan, Schiitze, Larson

Stemming

* Reduce terms to their “roots” before indexing
- language dependent

— e.g., automate(s), automatic, automation all reduced to
automat.

for example compressed for exampl compres and
and compression are both compres are both accept
accepted as equivalent to - as equival to compres.

compress.

slide from Raghavan, Schiitze, Larson

Porter’s algorithm

e Common algorithm for stemming English

e Conventions + 5 phases of reductions
— phases applied sequentially
— each phase consists of a set of commands

— sample convention: Of the rules in a compound
command, select the one that applies to the longest
suffix.

¢ Porter’s stemmer available:
http//www.sims.berkeley.edu/~hearst/irbook/porter.html

slide from Raghavan, Schiitze, Larson

Typical rules in Porter

* sses —> S§§
° jes > 1
e ational — ate

* tional — tion

slide from Raghavan, Schiitze, Larson

Challenges

e Sandy
« Sanded = Sand ???

¢ Sander

slide from Raghavan, Schiitze, Larson

Beyond Term Search
e Phrases?

* Proximity: Find Gates NEAR Microsoft.
— Index must capture position info in docs.

e Zones in documents: Find documents with
(author = Ullman) AND (text contains automata).

slide from Raghavan, Schiitze, Larson

Ranking search results
* Boolean queries give inclusion or exclusion of docs.

* Need to measure proximity from query to each doc.

* Whether docs presented to user are singletons, or a
group of docs covering various aspects of the query.

slide from Raghavan, Schiitze, Larson

Ranking models in IR
e Key idea:
— We wish to return in order the documents most likely to
be useful to the searcher
e To do this, we want to know which documents
best satisfy a query
— An obvious idea is that if a document talks about a topic
more then it is a better match
e A query should then just specify terms that are
relevant to the information need, without
requiring that all of them must be present
— Document relevant if it has a lot of the terms

slide from Raghavan, Schiitze, Larson

Retrieval Model Overview

e Older models
— Boolean retrieval
— Overlap Measures
— Vector Space model
 Probabilistic Models
- BM25
- Language models
e Combining evidence

— Learning to Rank

from Croft, Metzler,

Strohman. © Addison Wesley

Binary term presence matrices

¢ Record whether a document contains a word:
document is binary vector in {0,1}"

* ldea: Query satisfaction = overlap measure:

XY

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0
Brutus
Caesar
Calpurnia
Cleopatra

mercy

bRk O R e
©c ook ke
koo o o
B kO Ok e
koo r o
©or oo r o

worser

slide from Raghavan, Schiitze, Larson

Overlap matching

* What are the problems with the overlap
measure?
* It doesn’t consider:
— Term frequency in document
— Term scarcity in collection
¢ (How many documents mention term?)
— Length of documents

slide from Raghavan, Schiitze, Larson

Many Overlap Measures

|QND]| Simple matching (coordination level match)
,1QND| Dice’s Coefficient
[QI+|D|
|QND]| , -
Jaccard’s Coefficient
|QuD]
|QND|

10 |% «|D l/J/Z Cosine Coefficient

[QND| N
min(|Q|,| D) Overlap Coefficient

slide from Raghavan, Schiitze, Larson

Documents as vectors

» Each docj can be viewed as a vector of #f'values,

one component for each term
» So we have a vector space

— terms are axes

— docs live in this space

— even with stemming, may have 20,000+ dimensions
 (The corpus of documents gives us a matrix,

which we could also view as a vector space in
which words live — transposable data)

slide from Raghavan, Schiitze, Larson

Vector Space Representation

information

Documents that are close to query
(measured using vector-space metric)
=> returned first.
slide from Raghavan, Schitze, Larson

TF x IDF

w, =tf, *log(N/n,)

T, =term k in document D,
tf,, =frequency of term T, in document D,
idf, =inverse document frequency of termT, inC

idf, = |og(nﬂ)

N =total number of documents in the collection C
n, =the number of documents in C that contain T,

slide from Raghavan, Schiitze, Larson

BM25

Popular and effective ranking algorithm
based on binary independence model
— adds document and query term weights

= log (ri+0.5)/(R—r;+0.5) (ka1 fi | (k2t1)afi
1€EQ g('ni71‘i+0.5)/(Nf'ni7R+'r‘i+0,5) K+f; kotaqfi

— N = number of doc, n; = num containing term |
— R, r; = encode relevance info (if avail, otherwise = 0)
— f; = freq of term I in doc; gf; = freq in doc
— ki, k. and K are parameters, values set empirically
« k, weights tf component as f; increases
« k, = weights query term weight

. .
K normalizes adapted from Croft, Metzler,
Strohman. © Addison Wesley.

Simple Formulas

But How Process Efficiently?

Copyright © Weld 2002-2007 43

Thinking about Efficiency

e Clock cycle: 4 GHz

— Typically completes 2 instructions / cycle
« ~10 cycles / instruction, but pipelining & parallel execution
— Thus: 8 billion instructions / sec

» Disk access: 1-10ms

— Depends on seek distance, published average is 5ms
— Thus perform 200 seeks / sec

— (And we are ignoring rotation and transfer times)

 Disk is 40 Million times slower !!!

Copyright © Weld 2002-2007 44

Retrieval

Document-term matrix

oot ot nf

d; Wy Wip oo Wy oo Wy 17dy
d, Wy Wpp Wy oo Won 1|dy|
d; Wig Wi oo Wy e Wiy 1d|
Ay (W Wop oo Wy oo W 1/]dy|

w; is the weight of term t; in document d
Most w;;’s will be zero.

Copyright © Weld 2002-2007 45

Naive Retrieval

Consider query Q = (qy, Gy, -+, G, -+, Gy), NF = 1/q.
How evaluate Q?

(i.e., compute the similarity between q and every document)?
Method 1: Compare Q with every doc.
Document data structure:

di 2 ((ty Wi, (G W) - (W), (s Wi), Ldi)
— Only terms with positive weights are kept.
— Terms are in alphabetic order.

Query data structure:
Q:((ty), (A2 - - (G, T -+, (G A), L0

Copyright © Weld 2002-2007 46

Naive Retrieval (continued)
Method 1: Compare q with documents directly

initialize all sim(q, d;) = 0;
for each documentd; (i=1, ..., n)
{foreachtermt;(j=1, ..., m)
if t; appears in both q and d
sim(q, dj) += g #wy;
sim(q, d;) = sim(q, d;) ~&4q *(1/|di[); }
sort documents in descending similarities;
display the top k to the user;

Copyright © Weld 2002-2007 4

Observation

* Method 1 is not efficient
- Needs to access most non-zero entries in doc-term matrix.
+ Solution: Use Index (Inverted File)
- Data structure to permit fast searching.
+ Like an Index in the back of a text book.
Key words --- page numbers.
- E.g, “Etzioni, 40, 55, 60-63, 89, 220"
Lexicon
- Occurrences

Copyright © Weld 2002-2007 48

Search Processing (Overview)
1. Lexicon search
— E.g. looking in index to find entry
2. Retrieval of occurrences
— Seeing where term occurs
3. Manipulation of occurrences
— Going to the right page

Copyright © Weld 2002-2007 49

Requirements for Search

* Need index structure
— Must handle multiple documents
— Must support phrase queries
— Must encode TF/IDF values
— Must minimize disk seeks & reads

tot ot

m

a(,4,40)
entry (11, 20, 31) dy [Wy W Wy
file (2, 38) dy | wo Wy Wy,
lst (5, 41) I

position (9, 16, 26) N
positions (44) d, Bwy wyoowg

Copyright © Weld 2002-2007 51

How Store Index?

Lexicon Occurrence List
a

aa

add ————— | doclD # pos,, ...
and

Oracle Database?

Unix File System?

Simple Index for One Document s«

"% Afile is a list of words by position

10 Firstentry is the word in position 1 (first word)

2 Entry 4562 is the word in position 4562 (4562™ word)
% Lastentry is the last word

% An inverted file is a list of positions by word!

a (1, 4, 40)
entry (11, 20, 31)

fe 2.3
list (5, 41)

position (9, 16, 26)
positions (44) . N
word (14, 19, 24, 29, 35, 45) aka “Index
words (7)
4562 (21, 27)

Copyright © Weld 2002-2007 50

Index Size over Time

(millions of web pages)

1500
1250 f
1000
750
L]
500 =
250
[eem—T |
e
SRS ERL33353355535CE555558
—GG FAST — AV —INK —XNL

Now >> 50 Billion Pages

COExrighl © Weld 2002-2007

The Solution

* Inverted Files for Multiple Documents
— Broken into Two Files

e Lexicon
— Hashtable on disk (one read)
— Nowadays: stored in main memory

e Occurrence List

N Lexicon Occurrence List
— Stored on Disk
- “Google Filesystem” :a
add ———— | docID # pos,, ...
and

Copyright © Weld 2002-2007 54

Inverted Files for Multiple Documents

“jezebel” occurs
LEXICON I DOCID OCCUR POS1 POS2 ... 6timesindocument34,
3times in document 44,
4 times in document 56
“ezebel 20] [34] 6] 1] 118] 2087] 3922] 3981] 5002]
jezebe /r 44 3] 215] 2291 3010]

jezer 3 56] 4| 5] 22| 134 o92]

WORD | NDOCS| PTR

jezrahliah
jezreel 3

jezerit 1
jeziah 1 [e6] 3] 203] 245] 287]
jeziel 1
fodiah i | OCCURENCE
jezoar 1 I P INDEX
= |
9

T, | 107

322] 354 381] 405
15| 195| 248 1897| 1951] 2192

42| 312] 802]

| ===
677
| =

w|p|o|s

* One method. Alta Vista uses alternative

Copyright © Weld 2002-2007 55

Many Variations Possible

» Address space (flat, hierarchical)
» Record term-position information
Precalculate TF-IDF info

Stored header, font & tag info

o Compression strategies

Copyright © Weld 2002-2007 56

Other Features Stored in Index

Page Rank » Page Classifiers (20+)
Query word in color on page? - Spam
images on page ~ Adult
outlinks on page - Actor
— Celebrity
URL length _ Athlete

Page edit recency — Product / review

— Tech company
— Church
- Homepage

Amit Singhai says Google uses over 200 such features
[NY Times 2008-06-03]

Using Inverted Files

Some data structures:

Lexicon: a hash table for all terms in the collection.

— Inverted file lists previously stored on disk.
— Now fit in main memory

Copyright © Weld 2002-2007 58

The Lexicon

Grows Slowly (Heap’s law)

— O(nP) where n=text size; B is constant ~0.4 — 0.6
— E.g. for 1GB corpus, lexicon = 5Mb

— Can reduce with stemming (Porter algorithm)
Store lexicon in file in lexicographic order

— Each entry points to loc in occurrence file
(aka inverted file list)

Copyright © Weld 2002-2007 59

Using Inverted Files

Several data structures:

2. For each term t;, create a list (occurrence file list)
that contains all document ids that have t;.

I(t) = { (dy, wy,
(dy, ...
-}
- d; is the document id number of the it" document.

— Weights come from freq of term in doc
— Only entries with non-zero weights are kept.

Copyright © Weld 2002-2007 60

10

More Elaborate Inverted File

Several data structures:

2. Foreach term t;, create a list (occurrence file list)
that contains all document ids that have t;.

I(t) = { (dy, freq, pos,, ... posy),
(d,, ...
.}
- d; is the document id number of the it document.

— Weights come from freq of term in doc
— Only entries with non-zero weights are kept.

Copyright © Weld 2002-2007 61

Inverted files continued

More data structures:

3. Normalization factors of documents are pre-
computed and stored similarly to lexicon

nf[i] stores 1/|d].

Copyright © Weld 2002-2007 62

Retrieval Using Inverted Files
initialize all sim(q, d;) =0
for each term t;in g
find I(t) using the hash table
for each (d;, w;) in I(t)
sim(q, d)) += qg; *w;;
for each (relevant) document d,
sim(q, d;) = sim(q, d;) * nf[i]
sort documents in descending similarities
and display the top k to the user;

Copyright © Weld 2002-2007 63

Observations about Method 2

« Ifdoc d doesn’t contain any term of query g,
then d won't be considered when evaluating g.

e Only non-zero entries in the columns of the
document-term matrix which correspond to query
terms ... are used to evaluate the query.

e Computes the similarities of multiple documents

simultaneously (w.r.t. each query word)

Copyright © Weld 2002-2007 64

Efficient Retrieval
Example (Method 2): Suppose

q={(t1,1), (13,1) }, 1/g/ = 0.7071
d1={(t1,2), (t2, 1), (t3, 1) }, nf[1] = 0.4082
d2={(12,2), (t3, 1), (t4, 1) }, nf[2] = 0.4082
d3={(t1, 1), (3, 1), (t4, 1) }, nf[3] = 0.5774
da={(t1,2), (12, 1), (13, 2), (t4, 2) }, nf[4] = 0.2774
d5={ (12, 2), (t4, 1), (15, 2) }, nf[5] = 0.3333
I(t1) = { (d1, 2), (d3, 1), (d4,2) }

I(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5,2) }

I(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4,2) }

I(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5, 1) }

I(t5) = { (5, 2) }

Copyright © Weld 2002-2007 65

a={(1.1).(3, 1)}, | =07071 Efficient Retrieval
d1={(t1,2), (t2, 1), (t3, 1) }, nf[1] = 0.4082

d2={ (2, 2), (t3, 1), (t4, 1) }, nf[2] = 0.4082

d3={(tL, 1), (63, 1), (t4, 1) }, nf[3] = 0.5774

d4={(t1, 2), (t2, 1), (t3, 2), (t4, 2) }, nf[4] = 0.2774

d5={(t2, 2), (t4, 1), (t5, 2) }, nf[5] = 0.3333

I(t1) = { (d1, 2), (d3, 1), (d4, 2) } AfFer tlis processed_:

1(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5,2) } sim(q, d1) =2, sim(q, d2) =0,
1(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4,2) } sim(q, d3) = 1

I(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5, 1) } sim(g, d4) =2, sim(g, d5) =0

1(t5) ={ (d5, 2) } After t3 is processed:
sim(q, d1) =3, sim(q, d2) =1,
sim(q, d3) =2

sim(q, d4) =4, sim(q,d5)=0
After normalization:

sim(q, d1) = .87, sim(q, d2) = .29,

sim(q, d3) = .82
sim(q, d4) = .78, sim(qg, d5) =0

Copyright © Weld 2002-2007 66

11

Efficiency versus Flexibility

Storing computed document weights is good
for efficiency, but bad for flexibility.

— Recomputation needed if TF and IDF formulas

change and/or TF and DF information changes.

Flexibility improved by storing raw TF, DF
information, but efficiency suffers.
A compromise

— Store pre-computed TF weights of documents.

— Use IDF weights with query term TF weights
instead of document term TF weights.

Copyright © Weld 2002-2007 67

How Inverted Files are Created

Crawler Repository | => [ECUl = Forward
Index
ptrs

docs

Inverted S Sorted
can
File « * Index
List
Copyright © Weld 2002-2007 68

Creating Inverted Files em-@-m- (i)

e = B

Trverd o sorea
File <« haie Index
List

Repository

* File containing all documents downloaded

* Each doc has unique 1D

« Ptr file maps from IDs to start of doc in repository

Copyright © Weld 2002-2007 69

Creating Inverted Files

Repository | = Rl =
X +
v

; ,\®
NF ~ Length of each document /*

Forward Index Tem _Jow#] Pos
did 12
enact 1 3
julius 1 4
caesar 1 5
| 1 6
was 1 7
Copyright © Weld 2002-2007 70

Creating Inverted Files - @ ("

Vos v

N

i I s — -
julius 1 brutus. 2
v 1 e 3
killed 1 caesar 2
= > f
Sorted Index =2 1 e :
(positional info as well)
Copyright © Weld 2002-2007 71

Creating Inverted Files m

v

\ +
Sorted
< Balll <\ 1ndex

Lexicon boCD OCCUR POS1 POS2
WORD | NDOCS| PTR
jezebel 20 L —[34] 6] 1] 118] 2087 3922] 3981] 5002]
44| 3] 215] 2291 3010]
Jezer 3 56] 4] 5] 22 134] 992]
jezerit 1
jeziah 1 [s66] 3] 203] 245] 287]
jeziel 1 - .
jeaian i Inverted File List
jezoar 1
jezrahliah 1
jezreel 39 —
Copyright © Weld 2002-2007 72

12

Lexicon Construction

 Build Trie (or hash table)

1 6 911 1719 24 28 33 40 46 50 55 60
Thisis a text. A text has many words. Words are made from letters.

| ’
S S p—
\W many: 28

words: 33, 40

Copyright © Weld 2002-2007 73

O

Memory Too Small?

1-4
/ \

ERN s

1] | 3]

4

* Merging
— When word is shared in two lexicons
— Concatenate occurrence lists
- O(n1 +n2)

e Overall complexity

— O(n log(n/M)

Copyright © Weld 2002-2007

Stop lists

e Language-based stop list:
— words that bear little meaning
— 20-500 words

— http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
 Subject-dependent stop lists
* Removing stop words

— From document

— From query

From Peter Brusilovsky Univ Pittsburg INFSCI 2140

Copyright © Weld 2002-2007 75

Stemming
¢ Are there different index terms?

— retrieve, retrieving, retrieval, retrieved, retrieves...

e Stemming algorithm:

— (retrieve, retrieving, retrieval, retrieved, retrieves) =

retriev
— Strips prefixes of suffixes (-s, -ed, -ly, -ness)
— Morphological stemming

Copyright © Weld 2002-2007

Stemming Continued
» Can reduce vocabulary by ~ 1/3
» C, Java, Perl versions, python, c#
www.tartarus.org/~martin/PorterStemmer
« Criterion for removing a suffix

— Does "a document is about w," mean the same as
— a"a document about w,"

» Problems: sand / sander & wand / wander

« Commercial SEs use giant in-memory tables

Copyright © Weld 2002-2007 7

Compression
What Should We Compress?
- Repository
— Lexicon
— Inv Index

What properties do we want?

— Compression ratio

— Compression speed

— Decompression speed

— Memory requirements

— Pattern matching on compressed text
- Random access

Copyright © Weld 2002-2007

13

Inverted File Compression

Each inverted list has the form <f, ;d, , d,, d;, ..., df[>
A naive representation results in a storage overhead of (f + n) * [logN |
This can also be storedas - <f;d,,d,~d,,...d; —d, , >

Each difference is called a d-gap. Since Z(d —gaps)<N,

each pointer requires fewer than [logN'| bits.

Trick is encoding since worst case ...
q Assume d-gap representation for the rest of the talk, unless stated
otherwise

Slides adapted from Tapas Kanungo and David Mount, Univ Maryland
Copyright © Weld 2002-2007

Text Compression

Two classes of text compression methods
» Symbolwise (or statistical) methods

— Estimate probabilities of symbols - modeling step

— Code one symbol at a time - coding step

— Use shorter code for the most likely symbol

— Usually based on either arithmetic or Huffman coding
« Dictionary methods

— Replace fragments of text with a single code word

— Typically an index to an entry in the dictionary.
« eg: Ziv-Lempel coding: replaces strings of characters with a pointer to
a previous occurrence of the string.

— No probability estimates needed
m) Symbolwise methods are more suited for coding d-gaps

Copyright © Weld 2002-2007 80

Classifying d-gap Compression Methods:

e Global: each list compressed using same model
— non-parameterized: probability distribution for d-gap sizes is
predetermined.
— parameterized: probability distribution is adjusted according to
certain parameters of the collection.
 Local: model is adjusted according to some parameter,
like the frequency of the term

« By definition, local methods are parameterized.

Copyright © Weld 2002-2007 81

Conclusion
¢ Local methods best

« Parameterized global models ~ non-parameterized
— Pointers not scattered randomly in file
* In practice, best index compression algorithm is:
— Local Bernoulli method (using Golomb coding)
« Compressed inverted indices usually faster+smaller than
— Signature files
— Bitmaps

Local < Parameterized Global < Non-parameterized Global

\ Not by much

Copyright © Weld 2002-2007 82

14

