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Text Categorization

CSE 454

Administrivia

• Mailing List
• Groups for PS1
• Questions on PS1?

– See discussion & pseudocode for naive Bayes
in “Information Retrieval” by Manning, 
Raghavan, and Schutze

– Good textbook and available online for free

For Next Class

• Reading for Thurs
– Mercator: A Scalable, Extensible Web Crawler,
– by Allan Heydon & Mark Najork,

• Work on PS1
• Think about projects

Class Overview
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Categorization

• Given:
– A description of an instance, x∈X, where X is 

the instance language or instance space.
– A fixed set of categories:                          

C={c1, c2,…cn}
• Determine:

– The category of x: c(x)∈C, where c(x) is a 
categorization function whose domain is X and 
whose range is C.
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Sample Category Learning Problem

• Instance language: <size, color, shape>
– size ∈ {small, medium, large}
– color ∈ {red, blue, green}
– shape ∈ {square, circle, triangle}

• C = {positive, negative}
• D: Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

Another Example: County vs. Country?
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Example: County vs. Country?
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• Given:
– A description of an instance, x∈X, 

where X is the instance language or 
instance space.

– A fixed set of categories:                          
C={c1, c2,…cn}

• Determine:
– The category of x: c(x)∈C, where c(x) 

is a categorization function whose 
domain is X and whose range is C.

Bag of words representation
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Text Categorization

• Assigning documents to a fixed set of categories, e.g.
• Web pages 

– Yahoo-like classification
• What else?
• Email messages

– Spam filtering 
– Prioritizing 
– Folderizing

• News articles 
– Personalized newspaper

• Web Ranking
– Is page related to selling something?

Procedural Classification 

• Approach: 
– Write a procedure to determine a document’s class
– E.g., Spam?
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Learning for Text Categorization

• Hard to construct text categorization functions.
• Learning Algorithms:

– Bayesian (naïve)
– Neural network
– Relevance Feedback (Rocchio)
– Rule based (C4.5, Ripper, Slipper)
– Nearest Neighbor (case based)
– Support Vector Machines (SVM)

© Daniel S. Weld 14

Applications of ML

• Credit card fraud
• Product placement / consumer behavior
• Recommender systems
• Speech recognition

Most mature & successful 
area of AI
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Learning for Categorization
• A training example is an instance x∈X, paired 

with its correct category c(x):   <x, c(x)>
for an unknown categorization function, c. 

• Given a set of training examples, D.

• Find a hypothesized categorization function, 
h(x), such that: )()(: )(, xcxhDxcx =∈><∀

Consistency

{<          , county>, <       , country>,…

ML = Function Approximation
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c(x)

x

May not be any perfect fit
Classification ~ discrete functions

h(x)

h(x) = contains(`nigeria’, x)          ∧
contains(`wire-transfer’, x)
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Generalization

• Hypotheses must generalize to correctly classify 
instances not in the training data.

• Simply memorizing training examples is a 
consistent hypothesis that does not generalize.
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Why is Learning Possible?

Experience alone never justifies any 
conclusion about any unseen instance.

Learning occurs when
PREJUDICE meets DATA!

Learning a “Frobnitz”
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Bias

• The nice word for prejudice is “bias”.

• What kind of hypotheses will you consider?
– What is allowable range of functions you use when 

approximating?
• What kind of hypotheses do you prefer?
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Some Typical Biases

– Occam’s razor
“It is needless to do more when less will suffice”
– William of Occam, 

died 1349 of the Black plague

– MDL – Minimum description length
– Concepts can be approximated by 
– ... conjunctions of predicates

... by linear functions

... by short decision trees
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A Learning Problem

© Daniel S. Weld 22

Hypothesis Spaces
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Terminology
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General Learning Issues

• Many hypotheses consistent with the training data.
• Bias

– Any criteria other than consistency with the training data 
that is used to select a hypothesis.

• Classification accuracy 
– % of instances classified correctly
– (Measured on independent test data.)

• Training time 
– Efficiency of training algorithm

• Testing time 
– Efficiency of subsequent classification
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Two Strategies for ML

• Restriction bias: use prior knowledge to 
specify a restricted hypothesis space.

– Naïve Bayes Classifier
• Preference bias: use a broad hypothesis 

space, but impose an ordering on the 
hypotheses.

– Decision trees.
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Bayesian Methods

• Learning and classification methods based 
on probability theory.
– Uses prior probability of each category 

Given no information about an item.
– Produces a posterior probability distribution 

over possible categories 
Given a description of an item.

• Bayes theorem plays a critical role in 
probabilistic learning and classification.
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Axioms of Probability Theory

• All probabilities between 0 and 1

• Probability of truth and falsity 
P(true) = 1        P(false) = 0.

• The probability of  disjunction is:

1)(0 ≤≤ AP

)()()()( BAPBPAPBAP ∧−+=∨

A BBA∧
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Probability: Simple & Logical
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Conditional Probability 

• P(A | B) is the probability of A given B
• Assumes: 

– B is all and only information known.
• Defined by:

)(
)()|(

BP
BAPBAP ∧

=

BA BA∧
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Independence

• A and B are independent iff:

• Therefore, if A and B are independent:

)()|( APBAP =

)()|( BPABP =

)(
)(

)()|( AP
BP

BAPBAP =
∧

=

)()()( BPAPBAP =∧

These constraints are logically equivalent



© Daniel S. Weld 31

Independence
Tr

ue

B

A A ∧ B

P(A∧B) = P(A)P(B)
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Independence Is Rare

Tr
ue

AA ∧ B

A&B not independent, since P(A|B) ≠ P(A)

B

P(A) = 25%

P(B) = 80%

P(A|B) = ?≤ 1/7 
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Conditional Independence

Are A & B independent?   P(A|B)  ?  P(A)

A
A ∧ B

B

≤

P(A)=(.25+.5)/2 
= .375

P(B)= .75

P(A|B)=(.25+.25+.5)/3
=.3333
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A, B Conditionally Independent Given C

P(A|B,C) = P(A|C)               C = spots  

P(A|C)   =.25 A∧C          

C         
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A, B Conditionally Independent Given C

P(A|B,C) = P(A|C)               C = spots  

P(A|C)   =.25
P(B|C)   = 1.0

B∧C          
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A, B Conditionally Independent Given C

P(A|B,C) = P(A|C)               C = spots  

P(A|C)   =.25 
P(B|C)   = 1.0
P(A|B,C)=.25

A∧B∧C          

B∧C          
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A, B Conditionally Independent Given C

P(A|B,C) = P(A|C)               C = spots  

P(A|C)   =.25 
P(B|C)   = 1.0
P(A|B,C)=.25

P(A|¬C)   =.5 
P(B|¬C)   = .5
P(A|B,¬C)=.5

A∧¬C         

A∧B∧¬C

B∧¬C
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Conditional Independence = 
The Next Best Thing to Independence

P(A|B,C) = P(A|C)
= P(A|C)

A, B Conditionally Independent Given C
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Bayes Theorem

Simple proof from definition of conditional probability:

)(
)()|()|(

EP
HPHEPEHP =

)(
)()|(

EP
EHPEHP ∧

=

)()|()( HPHEPEHP =∧
QED:

(Def. cond. prob.)

(Def. cond. prob.)

)(
)()|()|(

EP
HPHEPEHP =

(Mult both sides of 2 by P(H).)

(Substitute 3 in 1.)

1702-1761

)|(
)(

)( HEP
HP

EHP
=

∧
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Bayesian Categorization

• Let set of categories be {c1, c2,…cn}
• Let E be description of an instance.
• Determine category of E by determining for each ci

• P(E) can be ignored since is factor ∀ categories 

)(
)|()()|(

EP
cEPcPEcP ii

i =

)|()(~)|( iii cEPcPEcP
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Bayesian Categorization 

• Need to know:
– Priors: P(ci) 
– Conditionals: P(E | ci)

• P(ci) are easily estimated from data. 
– If ni of the examples in D are in ci,then P(ci) =  ni / |D|

• Assume instance is a conjunction of binary features:

• Too many possible instances (exponential in m) to 
estimate all P(E | ci)

meeeE ∧∧∧= L21

Problem!

)|()(~)|( iii cEPcPEcP
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Naïve Bayesian Motivation

• Problem: Too many possible instances (exp in m)
to estimate all P(E | ci)

• Assume features of an instance are 
conditionally independent given the category (ci) 

• Now we only need to know  P(ej | ci)
for each feature and category.

)|()|()|(
1

21 ∏
=

=∧∧∧=
m

j
ijimi cePceeePcEP L



Conditional Independence??

spam?

due? egg? nigera? widow?viagra?

P(nigeria | spam) = P(nigeria | spam, widow) 

P(nigeria | spam) = P(nigeria | spam, viagra) 

44

Naïve Bayes Example

• C = {allergy, cold, well}
• e1 = sneeze; e2 = cough; e3 = fever
• E = {sneeze, cough, ¬fever}

Prob Well Cold Allergy
P(ci) 0.9 0.05 0.05
P(sneeze|ci) 0.1 0.9 0.9
P(cough|ci) 0.1 0.8 0.7
P(fever|ci) 0.01 0.7 0.4
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Naïve Bayes Example (cont.)

P(well | E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)
P(cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)
P(allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

Most probable category: allergy
P(E) = 0.089 + 0.01 + 0.019 = 0.0379
P(well | E) = 0.23
P(cold | E) = 0.26
P(allergy | E) = 0.50

Probability Well Cold Allergy

P(ci) 0.9 0.05 0.05

P(sneeze | ci) 0.1 0.9 0.9

P(cough | ci) 0.1 0.8 0.7

P(fever | ci) 0.01 0.7 0.4

E={sneeze, cough, ¬fever}

46

Estimating Probabilities

• Normally, probabilities are estimated based on 
observed frequencies in the training data.

• If D contains ni examples in category ci, and nij of 
these ni examples contains feature ej, then:

• However, estimating such probabilities from small 
training sets is error-prone.

• If due only to chance, a rare feature, ek, is always 
false in the training data, ∀ci :P(ek | ci) = 0.

• If ek then occurs in a test example, E, the result is 
that ∀ci: P(E | ci) = 0 and ∀ci: P(ci | E) = 0

i

ij
ij n

n
ceP =)|(
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Smoothing

• To account for estimation from small samples, 
probability estimates are adjusted or smoothed.

• Laplace smoothing using an m-estimate assumes 
that each feature is given a prior probability, p, that 
is assumed to have been previously observed in a 
“virtual” sample of size m.

• For binary features, p is simply assumed to be 0.5.

mn
mpn

ceP
i

ij
ij +

+
=)|( = (nij + 1) / (ni + 2)
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Naïve Bayes for Text

• Modeled as generating a bag of words for a 
document in a given category by repeatedly 
sampling with replacement from a 
vocabulary V = {w1, w2,…wm} based on the 
probabilities P(wj | ci).

• Smooth probability estimates with Laplace         
m-estimates assuming a uniform distribution 
over all words (p = 1/|V|) and m = |V|
– Equivalent to a virtual sample of seeing each word in 

each category exactly once.
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Text Naïve Bayes Algorithm
(Train)

Let V be the vocabulary of all words in the documents in D
For each category ci ∈ C

Let Di be the subset of documents in D in category ci
P(ci) = |Di| / |D|
Let Ti be the concatenation of all the documents in Di
Let ni be the total number of word occurrences in Ti
For each word wj∈ V

Let nij be the number of occurrences of wj in Ti
Let P(wi | ci) = (nij + 1) / (ni + |V|)  
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Text Naïve Bayes Algorithm
(Test)

Given a test document X
Let n be the number of word occurrences in X
Return the category:

where ai is the word occurring the ith position in X

)|()(argmax
1
∏
=∈

n

i
iii

Cic
caPcP
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Naïve Bayes Time Complexity

• Training Time:  O(|D|Ld + |C||V|))           
where Ld is the average length of a document in D.
– Assumes V and all Di , ni, and nij pre-computed in 

O(|D|Ld) time during one pass through all of the data.
– Generally just O(|D|Ld) since usually |C||V| < |D|Ld

• Test Time: O(|C| Lt)                                
where Lt  is the average length of a test document.

• Very efficient overall, linearly proportional to the 
time needed to just read in all the data.
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Easy to Implement

• But…

• If you do… it probably won’t work…

Probabilities: Important Detail!

Any more potential problems here?

• P(spam | E1 … En) =  Π P(spam | Ei)i

We are multiplying lots of small numbers 
Danger of underflow!

0.557 = 7 E -18       

Solution? Use logs and add!
p1 * p2 = e log(p1)+log(p2)

Always keep in log form 54

Underflow Prevention

• Multiplying lots of probabilities, which are 
between 0 and 1 by definition, can result in 
floating-point underflow.

• Since log(xy) = log(x) + log(y), it is better to 
perform all computations by summing logs 
of probabilities rather than multiplying 
probabilities.

• Class with highest final un-normalized log 
probability score is still the most probable.



55

Naïve Bayes Posterior Probabilities

• Classification results of naïve Bayes
– I.e. the class with maximum posterior probability…
– Usually fairly accurate (?!?!?)

• However, due to the inadequacy of the 
conditional independence assumption…
– Actual posterior-probability estimates not accurate.
– Output probabilities generally very close to 0 or 1.

Multi-Class Categorization

• Pick the category with max probability
• Create many 1 vs other classifiers
• Use a hierarchical approach (wherever 

hierarchy available)
Entity

Person Location

Scientist   Artist    City    County    Country
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