Text Categorization
CSE 454

Administrivia
- Mailing List
- Groups for PS1
- Questions on PS1?
- See discussion \& pseudocode for naive Bayes
in "Information Retrival" by Manning,
Raghavan, and Schutze
- Good textbook and available online for free

For Next Class

- Reading for Thurs
- Mercator: A Scalable, Extensible Web Crawler,
- by Allan Heydon \& Mark Najork,
- Work on PS1
- Think about projects

Categorization

- Given:
- A description of an instance, $x \in X$, where X is the instance language or instance space.
- A fixed set of categories:
$C=\left\{c_{1}, c_{2}, \ldots c_{\mathrm{n}}\right\}$
- Determine:
- The category of $x: c(x) \in C$, where $c(x)$ is a categorization function whose domain is X and whose range is C.

Sample Category Learning Problem

- Instance language: <size, color, shape>
- size \in \{small, medium, large\}
- color \in \{red, blue, green $\}$
- shape \in \{square, circle, triangle\}
- $C=\{$ positive, negative $\}$
- D:

Example	Size	Color	Shape	Category
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negative
4	large	blue	circle	negative

Example: County vs. Country?

- Given:
- A description of an instance, $x \in X$, where X is the instance language or instance space.
- A fixed set of categories:

 $C=\left\{c_{1}, c_{2}, \ldots c_{n}\right\}$
- Determine:
- The category of $x: c(x) \in C$, where $c(x)$ is a categorization function whose domain is X and whose range is C.

Text Categorization
- Assigning documents to a fixed set of categories, e.g.
- Web pages
- Yahoo-like classification
- What else?
- Email messages
- Spam filtering
- Prioritizing
- Folderizing
- News articles
- Personalized newspaper
- Web Ranking
- Is page related to selling something?

Procedural Classification

- Approach:
- Write a procedure to determine a document's class
- E.g., Spam?

Learning for Text Categorization

- Hard to construct text categorization functions.
- Learning Algorithms:
- Bayesian (naïve)
- Neural network
- Relevance Feedback (Rocchio)
- Rule based (C4.5, Ripper, Slipper)
- Nearest Neighbor (case based)
- Support Vector Machines (SVM)

Applications of ML

- Credit card fraud
- Product placement / consumer behavior
- Recommender systems
- Speech recognition

Most mature \& successful

 area of AI\qquad

Why is Learning Possible?
Experience alone never justifies any conclusion about any unseen instance.

Learning occurs when
PREJUDICE meets DATA!

Bias

- The nice word for prejudice is "bias".
-What kind of hypotheses will you consider?
- What is allowable range of functions you use when approximating?
- What kind of hypotheses do you prefer?
© Daniel S. Weld

Terminology

- Training example. An example of the form $\langle\mathbf{x}, f(\mathbf{x})\rangle$.
- Target function (target concept). The true function f.
- Hypothesis. A proposed function h believed to be similar to f.
- Concept. A boolean function. Examples for which $f(\mathbf{x})=1$ are called positive examples or positive instances of the concept. Examples for which $f(\mathbf{x})=0$ are called negative examples or negative instances.
- Classifier. A discrete-valued function. The possible values $f(\mathbf{x}) \in\{1, \ldots, K\}$ are called the classes or class labels.
- Hypothesis Space. The space of all hypotheses that can, in principle, be output by a learning algorithm.
- Version Space. The space of all hypotheses in the hypothesis space that have not yet been ruled out by a training example.

General Learning Issues

- Many hypotheses consistent with the training data.
- Bias
- Any criteria other than consistency with the training data that is used to select a hypothesis.
- Classification accuracy
- \% of instances classified correctly
- (Measured on independent test data.)
- Training time
- Efficiency of training algorithm
- Testing time
- Efficiency of subsequent classification

Two Strategies for ML

- Restriction bias: use prior knowledge to specify a restricted hypothesis space.
- Naïve Bayes Classifier
- Preference bias: use a broad hypothesis space, but impose an ordering on the hypotheses.
- Decision trees.

Axioms of Probability Theory

- All probabilities between 0 and 1

$$
0 \leq P(A) \leq 1
$$

- Probability of truth and falsity

$$
\mathrm{P}(\text { true })=1 \quad \mathrm{P}(\text { false })=0
$$

- The probability of disjunction is:
$P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Bayesian Methods

- Learning and classification methods based on probability theory.
- Uses prior probability of each category Given no information about an item.
- Produces a posterior probability distribution over possible categories
Given a description of an item.
- Bayes theorem plays a critical role in probabilistic learning and classification.

Probability: Simple \& Logical

- The definitions imply that certain logically related events must have related probabilities
E.g. $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Independence

- A and B are independent iff:

$$
\begin{aligned}
& P(A \mid B)=P(A) \quad \text { These constraints are logically equivalent } \\
& P(B \mid A)=P(B)
\end{aligned}
$$

- Therefore, if A and B are independent:
$P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=P(A)$
$P(A \wedge B)=P(A) P(B)$

A, B Conditionally Independent Given C

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B}, \mathrm{C})=\mathrm{P}(\mathrm{~A} \mid \mathrm{C}) \quad \mathrm{C}=\text { spots }
$$

$\mathrm{P}(\mathrm{A} \mid \mathrm{C})=.25$
$\mathrm{P}(\mathrm{B} \mid \mathrm{C})=1.0$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{C})=.25$
$\mathrm{P}(\mathrm{A} \mid \neg \mathrm{C})=.5$
$\mathrm{P}(\mathrm{B} \mid-\mathrm{C})=.5$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B}, \neg \mathrm{C})=.5$

Bayesian Categorization
 $P\left(c_{i} \mid E\right) \sim P\left(c_{i}\right) P\left(E \mid c_{i}\right)$

- Need to know:
- Priors: $\mathrm{P}\left(c_{i}\right)$
- Conditionals. $\mathrm{P}\left(E \mid c_{i}\right)$
- $\mathrm{P}\left(c_{i}\right)$ are easily estimated from data.
- If n_{i} of the examples in D are in c_{i}, then $\mathrm{P}\left(c_{i}\right)=n_{i} /|D|$
- Assume instance is a conjunction of binary features:

$$
E=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{m}
$$

- Too many possible instances (exponential in m) to estimate all $\mathrm{P}\left(E \mid c_{i}\right)$

Bayesian Categorization

- Let set of categories be $\left\{c_{1}, c_{2}, \ldots c_{\mathrm{n}}\right\}$
- Let E be description of an instance.
- Determine category of E by determining for each c_{i}

$$
P\left(c_{i} \mid E\right)=\frac{P\left(c_{i}\right) P\left(E \mid c_{i}\right)}{P(E)}
$$

- $\mathrm{P}(E)$ can be ignored since is factor \forall categories

$$
P\left(c_{i} \mid E\right) \sim P\left(c_{i}\right) P\left(E \mid c_{i}\right)
$$

De

Naïve Bayesian Motivation

- Problem: Too many possible instances (exp in m) to estimate all $\mathrm{P}\left(E \mid c_{i}\right)$
- Assume features of an instance are conditionally independent given the category (c_{i})

$$
P\left(E \mid c_{i}\right)=P\left(e_{1} \wedge e_{2} \wedge \cdots \wedge e_{m} \mid c_{i}\right)=\prod_{j=1}^{m} P\left(e_{j} \mid c_{i}\right)
$$

- Now we only need to know $\mathrm{P}\left(e_{j} \mid c_{i}\right)$ for each feature and category.

Naïve Bayes Example

- C = \{allergy, cold, well $\}$
- $e_{1}=$ sneeze; $e_{2}=$ cough; $e_{3}=$ fever
- $\mathrm{E}=\{$ sneeze, cough, \neg fever $\}$

Prob	Well	Cold	Allergy
$\mathrm{P}\left(c_{i}\right)$	0.9	0.05	0.05
$\mathrm{P}\left(\right.$ sneeze $\left.\mid c_{i}\right)$	0.1	0.9	0.9
$\mathrm{P}\left(\right.$ cough $\left.\mid c_{i}\right)$	0.1	0.8	0.7
$\mathrm{P}\left(\right.$ fever $\left.\mid c_{i}\right)$	0.01	0.7	0.4

Estimating Probabilities

- Normally, probabilities are estimated based on observed frequencies in the training data.
- If D contains n_{i} examples in category c_{i}, and $n_{i j}$ of these n_{i} examples contains feature e_{j}, then:

$$
P\left(e_{j} \mid c_{i}\right)=\frac{n_{i j}}{n_{i}}
$$

- However, estimating such probabilities from small training sets is error-prone.
- If due only to chance, a rare feature, e_{k}, is always false in the training data, $\forall c_{i}: \mathrm{P}\left(e_{k} \mid c_{i}\right)=0$.
- If e_{k} then occurs in a test example, E, the result is that $\forall c_{i}: \mathrm{P}\left(E \mid c_{i}\right)=0$ and $\forall c_{i}: \mathrm{P}\left(c_{i} \mid E\right)=0$

Naïve Bayes for Text

- Modeled as generating a bag of words for a document in a given category by repeatedly sampling with replacement from a vocabulary $V=\left\{w_{1}, w_{2}, \ldots w_{\mathrm{m}}\right\}$ based on the probabilities $\mathrm{P}\left(w_{j} \mid c_{i}\right)$.
- Smooth probability estimates with Laplace m-estimates assuming a uniform distribution over all words ($p=1 /|V|$) and $m=|V|$
- Equivalent to a virtual sample of seeing each word in each category exactly once.
- For binary features, p is simply assumed to be 0.5 .

Text Naïve Bayes Algorithm (Train)

Let V be the vocabulary of all words in the documents in D
For each category $c_{i} \in C$
Let D_{i} be the subset of documents in D in category c_{i} $\mathrm{P}\left(c_{i}\right)=\left|D_{i}\right| /|D|$
Let T_{i} be the concatenation of all the documents in D_{i}
Let n_{i} be the total number of word occurrences in T_{i}
For each word $w_{j} \in V$
Let $n_{i j}$ be the number of occurrences of w_{j} in T_{i} Let $\mathrm{P}\left(w_{i} \mid c_{i}\right)=\left(n_{i j}+1\right) /\left(n_{i}+|V|\right)$

Text Naïve Bayes Algorithm (Test)

Given a test document X
Let n be the number of word occurrences in X Return the category:

$$
\underset{c_{i} \in C}{\operatorname{argmax}} P\left(c_{i}\right) \prod_{i=1}^{n} P\left(a_{i} \mid c_{i}\right)
$$

where a_{i} is the word occurring the i th position in X

Easy to Implement

- But...
- If you do... it probably won't work...

Probabilities: Important Detail!

- $\mathrm{P}\left(\right.$ spam $\left.\mid \mathrm{E}_{1} \ldots \mathrm{E}_{\mathrm{n}}\right)=\prod_{\mathrm{i}} \mathrm{P}\left(\right.$ spam $\left.\mid \mathrm{E}_{\mathrm{i}}\right)$

Any more potential problems here?

- We are multiplying lots of small numbers

Danger of underflow!

- $0.5^{57}=7$ E - 18
- Solution? Use logs and add!
- $\mathrm{p}_{1} * \mathrm{p}_{2}=\mathrm{e}^{\log (\mathrm{p})+\log (\mathrm{p} 2)}$
- Always keep in log form

Underflow Prevention

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since $\log (x y)=\log (x)+\log (y)$, it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

Naïve Bayes Posterior Probabilities
- Classification results of naïve Bayes
- I.e. the class with maximum posterior probability...
- Usually fairly accurate (?!?!?)
However, due to the inadequacy of the
conditional independence assumption...
- Actual posterior-probability estimates not accurate.
- Output probabilities generally very close to 0 or 1.

