Administrivia

 Mailing List
» Groups for PS1
e Questions on PS1?

— See discussion & pseudocode for naive Bayes
in “Information Retrieval” by Manning,
CSE 454 Raghavan, and Schutze

— Good textbook and available online for free

Text Categorization

For Next Class Class Overview

 Reading for Thurs

— Mercator: A Scalable, Extensible Web Crawler,
— by Allan Heydon & Mark Najork, Other Cool Stuff
* Work on PS1 Query processing
Content Analysis
Indexing
Crawling
Document Layer
Network Layer

 Think about projects

Class Overview Class Overview

Content Analysis

Document Layer *
Network Layer } Next Classes




Categorization

* Given:
— A description of an instance, xe X, where X is
the instance language or instance space.
— A fixed set of categories:
C={cy, ¢y -G}
 Determine:
— The category of x: ¢(x)eC, where c(x) is a
categorization function whose domain is X and
whose range is C.

Another Example: County vs. Country?

Text Categorization

» Assigning documents to a fixed set of categories, €.g.
* Web pages
— Yahoo-like classification
e What else?
* Email messages
— Spam filtering
— Prioritizing
— Folderizing
* News articles
— Personalized newspaper
* Web Ranking
— Is page related to selling something?

Sample Category Learning Problem

« Instance language: <size, color, shape>
— size e {small, medium, large}
— color e {red, blue, green}
— shape e {square, circle, triangle}

e C ={positive, negative}

* D: Example |Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle | negative
4 large blue circle negative

Example: County vs. Country?

e Given: :
— A description of an instance, xeX, — 3
where X is the instance language or = =
|nst_ance space. . ‘ese(\xa
— A fixed set of categories: \No(gs‘e‘) -
C:{c%, Cy,...Co} 63‘30 = =
 Determine: E
— The category of x: c(x)eC, where c¢(x)
is a categorization function whose
domain is X and whose range is C.

Procedural Classification

e Approach:
— Write a procedure to determine a document’s class
- E.g., Spam?




Learning for Text Categorization

 Hard to construct text categorization functions.

* Learning Algorithms:
— Bayesian (naive)
— Neural network
— Relevance Feedback (Rocchio)
— Rule based (C4.5, Ripper, Slipper)
— Nearest Neighbor (case based)
— Support Vector Machines (SVM)

Applications of ML

Credit card fraud

Product placement / consumer behavior
Recommender systems

Speech recognition

Most mature & successful
area of Al

Learning for Categorization

« A training example is an instance xe X, paired
with its correct category c(x): <X, c(x)>
for an unknown categorization function, c.

* Given a set of training examples, D.

“
-

{< -, county> < -, country>,...

* Find a hypothesized categorization function,
h(x), such that: ¥ < x,c(x) > D :h(x) =c(X)

Consistency
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ML = Function Approximation

May not be any perfect fit
Classification ~ discrete functions
h(x) = contains("nigeria’, x) A
contains("wire-transfer’, x)

h(x)
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Generalization

» Hypotheses must generalize to correctly classify
instances not in the training data.

« Simply memorizing training examples is a
consistent hypothesis that does not generalize.

Why is Learning Possible?

Experience alone never justifies any
conclusion about any unseen instance.

Learning occurs when
PREJUDICE meets DATA!

Learning a “Frobnitz”
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Bias

« The nice word for prejudice is “bias”.

» What kind of hypotheses will you consider?
—What is allowable range of functions you use when
approximating?
» What kind of hypotheses do you prefer?

Some Typical Biases

—Occam’s razor
“It is needless to do more when less will suffice”
— William of Occam,
died 1349 of the Black plague
—MDL - Minimum description length
—Concepts can be approximated by

Q
— ... conjunctions of predicates "ﬂ)'
.. by linear functions ?‘3““

.. by short decision trees

A Learning Problem

3 —— | Usiknown

x4 > Function

Example £ 3 73 x4 |y

1 o0 1 o0
2 o1 0 0|0
3 o0 1 11
4 1o 0 1|1
5 o1 1 o0
] 11 0 0|0
7 o1 01 | 0

Hypothesis Spaces

» Complete Ignorance. There are 2'% = 65536 possible boolean functions over four
input featurcs. We can't figure out which cne is correct until we've scen every possible
input-output pair. After T examples, we still have 2° possibilities.
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Terminology

» Training example. An example of the form {x, f{x)).
« Target function (target concept). The true function f.
» Hypothesis, A proposed function b believed to be similar to f.

« Concept. A boolean function. Examples for which f{x) = 1 are called positive ex-
amples or positive instances of the concept. Examples for which f{x) = 0 are called

or megati
# Classifier. A discrete-valued function. The possible values f(x) € {1,..., K} are called

the classes or class labels.

» Hypothesis Space. The space of all hypotheses that can, in principle, be output by a
learning algorithm.

» Version Space. The space of all hypatheses in the hypothesis space that have not yet

been ruled out by a training example,

General Learning Issues

Many hypotheses consistent with the training data.
Bias

— Any criteria other than consistency with the training data

that is used to select a hypothesis.

Classification accuracy

— % of instances classified correctly

— (Measured on independent test data.)
Training time

— Efficiency of training algorithm
Testing time

— Efficiency of subsequent classification




Two Strategies for ML

« Restriction bias: use prior knowledge to
specify a restricted hypothesis space.
—Naive Bayes Classifier
* Preference bias: use a broad hypothesis
space, but impose an ordering on the
hypotheses.
—Decision trees.

Bayesian Methods

* Learning and classification methods based
on probability theory.
— Uses prior probability of each category
Given no information about an item.
— Produces a posterior probability distribution
over possible categories
Given a description of an item.

 Bayes theorem plays a critical role in
probabilistic learning and classification.

Axioms of Probability Theory

« All probabilities between 0 and 1
0<P(A)<1

* Probability of truth and falsity
P(true) =1 P(false) = 0.

* The probability of disjunction is:
P(Av B)=P(A)+P(B)-P(AAB)

JGP ﬂ

Probability: Simple & Logical

= The definitions imply that certain logically related events must have related

probabilities
E.g. P(AvB) = P(A) + P(B) - P(A1B)
AAB
Q
2
[

de Finetti (1931): an agent who bets according to probabilities that violate
these axioms can be forced to bet so as to lose money regardless of outcome.

Conditional Probability

* P(A| B) is the probability of A given B
e Assumes:

— Bis all and only information known.
* Defined by:

p(AlB) = PAB)

P(B)

IOD

Independence

« A and B are independent iff:
P(A|B)=P(A)
P(B|A)=P(B)

 Therefore, if A and B are independent:

P(AAB)

P(AIB) =57 =P(A)

P(AAB)=P(A)P(B)

These constraints are logically equivalent




Independence

P(AAB) = P(A)P(B)

True

Independence Is Rare

A&B not independent, since P(A|B) = P(A)

P(A) = 25%

AAB A

P(B) = 80%

True

P(AB) < 1/7

Conditional Independence

Are A & B independent? P(AIB) < P(A)

P(A)=(.25+.5)/2
A AAB —37s

P(B)=.75

P(A|B)=(.25+.25+5)/3
=.3333

A, B Conditionally Independent Given C

P(A|B,C) = P(A|C)

C = spots

A, B Conditionally Independent Given C

P(A|B,C) = P(A|C) C = spots
P(AIC) =25
P(BIC) =1.0

A, B Conditionally Independent Given C

P(A|B,C) = P(A|C)

P(AIC) =.25

G

C = spots

P(A|B,C)=.25




A, B Conditionally Independent Given C

P(AIB,C) = P(A|C) C = spots
AABA-C
BeniC P(AI-C) =5
P(B|-C) =.5
P(AB,-C)=.5

Conditional Independence =
The Next Best Thing to Independence

A, B Conditionally Independent Given C

P(A|B,C) = P(A|C)
=P(AI0)

Bayes Theorem

PE[H)P(H)

PIHIE) =" 08

Simple proof from definition of conditional probébility:

P(H |E)= P(HAE) (Def. cond. prob.)
P(E)
PHAE) _ P(E|H) (Def. cond. prob.)
P(H)
P(H AE)=P(E|H)P(H) (Multboth sides of 2 by P(H).)
QED:
P(HIE)= w (Substitute 3 in 1.)

Bayesian Categorization

* Let set of categories be {c,, C,,...C.}
Let E be description of an instance.
* Determine category of E by determining for each c;
P(c,)P(E|c;)
P(E)

P(c |E)=
* P(E) can be ignored since is factor v categories

P(c|E)~P(c)P(E]c)

Bayesian Categorization P& IE)~P(C)P(E]c)

» Need to know:
— Priors: P(c;)

— Conditionals! 0'6

)/
* P(c;) are easily estimated from data. @.%.,
— If n; of the examples in D are in ¢, then P(c;) = n;/ |D|
< Assume instance is a conjunction of binary features:
E=e e, A AE,
« Too many possible instances (exponential in m) to
estimate all P(E | ¢;)

Naive Bayesian Motivation

* Problem: Too many possible instances  (exp in m)

to estimate all P(E | ¢;)

» Assume features of an instance are
conditionally independent given the category (c;)

P(Elc))=P(e,ne, Avomne, |Ci):HP(eJ lc)
2

* Now we only need to know P(g;| c;)
for each feature and category.




Conditional Independence??

nigera? viagra?

P(nigeria | spam) = P(nigeria | spam, widow)

P(nigeria | spam) = P(nigeria | spam, viagra)

Naive Bayes Example

C = {allergy, cold, well}
e, = sneeze; e, = cough; e, = fever
E = {sneeze, cough, —fever}

Prob Well |Cold |Allergy
P(c) 0.9 0.05 0.05
P(sneeze|c;) 0.1 0.9 0.9
P(coughic;) 0.1 0.8 0.7
P(fever|c;) 0.01 0.7 0.4

Naive Bayes Example (cont.)

Probability Well Cold Allergy

P(c) 0.9 0.05 0.05

P(sneeze | c)) 0.1 0.9 0.9 E={sneeze, cough, —fever}
P(cough | ¢;) 0.1 0.8 0.7

P(fever | ¢;) 0.01 0.7 0.4

P(well | E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)
P(cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)
P(allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

Most probable category: allergy

P(E) =0.089 +0.01 + 0.019 = 0.0379
P(well | E) = 0.23

P(cold | E) = 0.26

P(allergy | E) = 0.50

Estimating Probabilities

Normally, probabilities are estimated based on
observed frequencies in the training data.
If D contains n; examples in category c;, and n;; of
these n; examples contains feature &), then:
n.
P(ej | Ci) =
n

However, estimating such probabilities from small
training sets is error-prone.

If due only to chance, a rare feature, e,, is always
false in the training data, vc; :P(e, | ¢;) = 0.

If ¢, then occurs in a test example, E, the result is
that Vc¢;: P(E | ¢;) =0and Vc¢;: P(¢c;| E) =0

26

Smoothing

 To account for estimation from small samples,
probability estimates are adjusted or smoothed.

 Laplace smoothing using an m-estimate assumes
that each feature is given a prior probability, p, that
is assumed to have been previously observed in a
“virtual” sample of size m.
n;+mp  _
P(ejlci)zi _(nij+l)/(ni+2)

U}
n+m

* For binary features, p is simply assumed to be 0.5.

Naive Bayes for Text

Modeled as generating a bag of words for a
document in a given category by repeatedly
sampling with replacement from a
vocabulary V = {w;, w,,...w,,} based on the
probabilities P(w; | c;).

Smooth probability estimates with Laplace
m-estimates assuming a uniform distribution
over all words (p = 1/|V|) and m = |V|

— Equivalent to a virtual sample of seeing each word in
each category exactly once.




Text Naive Bayes Algorithm
(Train)

Let V be the vocabulary of all words in the documents in D
For each category ¢; € C
Let D, be the subset of documents in D in category c;
P(c) = IDj| /DI
Let T; be the concatenation of all the documents in D;
Let n; be the total number of word occurrences in T;
For each word w; e V
Let n;; be the number of occurrences of w;in T;
Let P(w; | ¢)) = (ny+ 1) / (n+ V])

Text Naive Bayes Algorithm
(Test)

Given a test document X
Let n be the number of word occurrences in X
Return the category:
n
argmax P(c))[ [ P(a; | c;)
c;eC i=1
where a; is the word occurring the ith position in X

Naive Bayes Time Complexity

* Training Time: O(|D|Ly + |C||V]))
where L is the average length of a document in D.

— Assumes V and all Dy, n;, and nj; pre-computed in
O(|D|L) time during one pass through all of the data.

— Generally just O(|DI|Ly) since usually |C||V| < |D|L4
 Test Time: O(|C| L)
where L, is the average length of a test document.

 Very efficient overall, linearly proportional to the
time needed to just read in all the data.

Easy to Implement

e But...

* If you do... it probably won’t work...

Probabilities: Important Detail!

* P(spam |E, ... E)) = H P(spam | E})
|
Any more potential problems here?
= We are multiplying lots of small numbers

Danger of underflow!
= 05=7E-18

= Solution? Use logs and add!
" p; * p, = e 10u(p1)*log(p2)
= Always keep in log form

Underflow Prevention

« Multiplying lots of probabilities, which are
between 0 and 1 by definition, can result in
floating-point underflow.

« Since log(xy) = log(x) + log(y), it is better to
perform all computations by summing logs
of probabilities rather than multiplying
probabilities.

* Class with highest final un-normalized log
probability score is still the most probable.




Naive Bayes Posterior Probabilities Multi-Class Categorization

« Classification results of naive Bayes
— l.e. the class with maximum posterior probability...
— Usually fairly accurate (?!?!?)

» However, due to the inadequacy of the
conditional independence assumption...
— Actual posterior-probability estimates not accurate.
— Output probabilities generally very close to 0 or 1.

* Pick the category with max probability
 Create many 1 vs other classifiers

 Use a hierarchical approach (wherever
hierarchy available)
Entity

Person Location

SN TN

Scientist Artist City County Country




