

To do

- Add picture of original MT
- Add greg little or casting words flowchart
- Discussion included qualifications, contracts,

CSE 454 Overview

HTTP, HTML, Scaling \& Crawling

Cryptography \& Security

Cyptography

- Symmetric + asymmetric ciphers
- Stream + block ciphers; 1-way hash
- $Z=Y^{X} \bmod N$

DNS, HTTP, HTML

- Get, put, post
- Cookies, log file analysis

DNS

- Hierarchical namespace
- Susceptible to DOS attacks
- Recent news: Google Public DNS

HTTP

- Get, put, post
- Cookies, log file analysis

HTML

- Link extraction

Transfer of Confidential Data

- But the Internet provides no privacy.
- Is there any way to protect my data from prying eyes at intermediate nodes?

Symmetric Encryption

- If the user has a pre-existing relationship with the merchant, they may have a shared secret key K known only to the two parties.
- User encrypts private data with key K .
- Merchant decrypts data with key K.

Asymmetric Encryption

- What if the user and merchant have no prior relationship?
- Asymmetric encryption allows me to encrypt a message for a recipient without knowledge of the recipient's decryption key.

Slides by Josh Benaloh

The Fundamental Equation

The Fundamental Equation

When Z is unknown, it can be efficiently computed.

The Fundamental Equation

The Fundamental Equation

mod

When X is unknown, the problem is known as the discrete logarithm and is generally believed to be hard to solve.

The Fundamental Equation

The problem is not well-studied for the case when N is unknown. known as discrete root finding and is generally believed to be hard to solve ...
without the factorization of N .

How to compute $Y^{X} \bmod N$

Compute Y^{X} and then reduce mod N.

- If X, Y, and N each are 1,000 -bit integers, Y^{\times}consists of $\sim 2^{1010}$ bits.
- Since there are roughly 2^{250} particles in the universe, storage is a problem.

How to compute $Y^{X} \bmod N$

- Repeatedly multiplying by Y (followed each time by a reduction modulo N) X times solves the storage problem.
- However, we would need to perform $\sim 2^{900}$ 32-bit multiplications per second to complete the computation before the sun burns out.

```
How to compute }\mp@subsup{Y}{}{X}\operatorname{mod}
Multiplication by Repeated Doubling
To compute X P Y,
    compute Y, 2Y, 4Y, 8Y, 16Y,...
    and sum up those values dictated by the
    binary representation of }X\mathrm{ .
Example: 26Y = 2Y + 8Y + 16Y.

\section*{How to compute \(Y^{X} \bmod N\)}

We can now perform a 1,000-bit modular exponentiation using \(\sim 1,500\) 1,000-bit modular multiplications.
- 1,000 squarings: \(y, y^{2}, y^{4}, \ldots, y^{2^{1000}}\)
- ~500 "ordinary" multiplications

\section*{RSA Encryption/Decryption}
- Select two large primes \(p\) and \(q\).
- Publish the product \(N=p q\).
- The exponent \(X\) is typically fixed at 65537.
- Encrypt message \(Y\) as \(E(Y)=Y^{X} \bmod N\).
- Decrypt ciphertext \(Z\) as \(D(Z)=Z^{1 / X} \bmod N\).
- Note \(D(E(Y))=\left(Y^{X}\right)^{1 / X} \bmod N=Y\).

\section*{How to compute \(Y^{X} \bmod N\)}

Exponentiation by Repeated Squaring
To compute \(Y^{\times}\),
compute \(\quad \mathrm{Y}, \mathrm{Y}^{2}, \mathrm{Y}^{4}, \mathrm{Y}^{8}, \mathrm{Y}^{16}, \ldots\)
and multiply those values dictated by the binary representation of \(X\).

Example: \(\mathrm{Y}^{26}=\mathrm{Y}^{2} \cdot \mathrm{Y}^{8} \cdot \mathrm{Y}^{16}\).

Slides by Josh Benaloh

\section*{The Fundamental Equation}
\[
\mathrm{Z}=\mathbf{Y}^{\times}
\]

When \(Y\) is unknown, the problem is known as discrete root finding and is generally believed to be hard to solve ... without the factorization of N .

\section*{RSA Signatures and Verification}
- Not only is \(D(E(Y))=\left(Y^{\times}\right)^{1 / X} \bmod N=Y\), but also \(E(D(Y))=\left(Y^{1 / X}\right)^{X} \bmod N=Y\).
- To form a signature of message \(Y\), create \(S=D(Y)=Y^{1 / X} \bmod N\).
- To verify the signature, check that \(E(S)=S^{X} \bmod N\) matches \(Y\).


Digital Certificates



\section*{SSLIPCT/TLS History}
- 1994: Secure Sockets Layer (SSL) V2.0
- 1995: Private Communication Technology (PCT) V1.0
- 1996: Secure Sockets Layer (SSL) V3.0
- 1997: Private Communication Technology (PCT) V4.0
- 1999: Transport Layer Security (TLS) V1.0

Slides by Josh Benaloh

\section*{SSLITLS}

All subsequent secure messages are sent using the symmetric key and a keyed hash for message authentication.

\section*{Symmetric Ciphers}

Private-key (symmetric) ciphers are usually divided into two classes.
- Block ciphers
- Stream ciphers

\section*{Block Ciphers}

DES, AES, RC2, RC5, etc.



\section*{Block Cipher Integrity}

With ECB mode, identical blocks will have identical encryptions.

This can enable replay attacks as well as re-orderings of data. Even a passive observer may obtain statistical data.

\section*{Block Cipher Modes}

Cipher Block Chaining (CBC) Encryption:


Slides by Josh Benaloh

\section*{Block Cipher Modes}

Electronic Code Book (ECB) Decryption:


Slides by Josh Benaloh

\section*{Stream Ciphers}

RC4, SEAL, etc.
- Use the key as a seed to a pseudorandom number-generator (PRNG).
- Take the stream of output bits from the PRNG and XOR it with the plaintext to form the ciphertext.

\section*{Stream Cipher Encryption}

Plaintext:
\(\oplus \oplus \oplus\)
PRNG(seed):


Ciphertext:

\section*{Stream Cipher Integrity}
- It is easy for an adversary (even one who can't decrypt the ciphertext) to alter the plaintext in a known way.
Bob to Bob's Bank:
Please transfer \$1,000,002.00 to the account of my good friend Alice.

\section*{Stream Cipher Integrity}
- It is easy for an adversary (even one who can't decrypt the ciphertext) to alter the plaintext in a known way.
Bob to Bob's Bank:
Please transfer \$0,000,002.00 to the account of my good friend Alice.

\section*{One-Way Hash Functions}

The idea of a check sum is great, but it is designed to prevent accidental changes in a message.
For cryptographic integrity, we need an integrity check that is resilient against a smart and determined adversary.

\section*{One-Way Hash Functions}

MD4, MD5, SHA-1, SHA-256, etc.

A one-way hash function is a function
```

 \(\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{k}} \quad\) (typically k is 128 or
 160)
    ```
such that, given an input value \(x\), one can't find \(x^{\prime} \neq x\) such that \(H(x)=H\left(x^{\prime}\right.\)
). Slides by Josh Benaloh

\section*{One-Way Hash Functions}

There are many measures for one-way hashes.
- Non-invertability: given y , it's difficult to find any \(x\) such that \(H(x)=y\).
- Collision-intractability: one cannot find a pair of values \(x^{\prime} \neq x\) such that \(H(x)=\) \(H\left(x^{\prime}\right)\).

\section*{One-Way Hash Functions}
- When using a stream cipher, a hash of the message can be appended to ensure integrity. [Message
Authentication Code]
- When forming a digital signature, the signature need only be applied to a hash of the message. [Message Digest]

\section*{Common Types of Clusters}


Inktomi (2001) Supports programs (not users) Persistent data is partitioned across servers:
\(\Uparrow\) capacity, but \(\Downarrow\) data loss if server fails
From: Brewer Lessons from Giant-Scale Services

\section*{Structure of Mercator Spider}

1. Remove URL from queue
2. Simulate network protocols \& REP
3. Read w/ RewindlinputStream (RIS)
4. Has document been seen before? (checksums and fingerprints)
5. Extract links
6. Download new URL?
7. Has URL been seen before?
8. Add URL to frontier

\section*{CSE 454 Overview}


\section*{The Precision / Recall Tradeoff}


- How Process Efficiently?

\section*{Thinking about Efficiency}

Clock cycle: 2 GHz
- Typically completes 2 instructions / cycle
- ~10 cycles / instruction, but pipelining \& parallel execution
- Thus: 4 billion instructions / sec

Disk access: 1-10ms
- Depends on seek distance, published average is 5 ms
- Thus perform 200 seeks / sec
- (And we are ignoring rotation and transfer times)
- Disk is \(\mathbf{2 0}\) Million times slower !!!

How Inverted Files are Created


Inverted Files for Multiple Documents

- One method. Alta Vista uses alternative
56

\section*{AltaVista}
- Basic Framework
- Flat 64-bit address space
- Index Stream Readers: Loc, Next, Seek, Prev
- Constraints
- Let E be ISR for word enddoc
- Constraints for conjunction a AND b
- \(\operatorname{prev}(E) \leq \operatorname{loc}(A)\)
- \(\operatorname{loc}(\mathrm{A}) \leq \operatorname{loc}(\mathrm{E})\)
- \(\operatorname{prev}(\mathrm{E}) \leq \operatorname{loc}(\mathrm{B})\)
- \(\operatorname{loc}(B) \leq \operatorname{loc}(E)\)


50-80\% Page Views = Revisits
\begin{tabular}{|c|c|c|c|}
\hline Cluster Group & Name & Shape & Description \\
\hline \multirow{5}{*}{Fast Revises (c bour) 23611 pages} & F1 & \(L\) & \multirow{5}{*}{Pornography \& Spam. Hub \& Spoke, Shopping \& Reference Web sites, Auto refrech. Fast monitoring} \\
\hline & F2 & \(\checkmark\) & \\
\hline & F3 & \(\wedge\) & \\
\hline & F4 & \(\underline{ }\) & \\
\hline & F5 & & \\
\hline \multirow[t]{2}{*}{Medium
(tous to dyy) 9421 pages 9421 pages} & M1 & \(\bigcirc\) & \multirow[t]{2}{*}{Popular homepages, Communication, edu domain. Browser homepages} \\
\hline & M2 & ת & \\
\hline \multirow{4}{*}{Slow Revixits (> day) 18422 pages} & \$1 & \(\square\) & \multirow{4}{*}{Entry pages. Weekend activity. Search engines used for revisitation, Child-oriented content, Software updates} \\
\hline & \$2 & \(\wedge\) & \\
\hline & \$3 & \(\ldots\) & \\
\hline & S4 & & \\
\hline Hybrid 3334 pages & H1 & & Popular but infrequently used. Entertainment \& Hobbies. Combined Fast \& Slow \\
\hline
\end{tabular}


\section*{IE with Hidden Markov Models}

Given a sequence of observations:
Yesterday Pedro Domingos spoke this example sentence.


Find the most likely state sequence: (Viterbi) \(\arg \max _{\bar{s}} P(\stackrel{\rightharpoonup}{s}, \vec{o})\)


Any words said to be generated by the designated "person name" state extract as a person name:

Person name: Pedro Domingos
\& McCallum


How did we compute \(\delta^{\star}\) ? \(\quad \operatorname{Max}_{i} \delta_{T-1}(i) * P_{\text {trans }}{ }^{*} P_{\text {obs }}\)
Now Backchain to Find Final Sequence
Time: \(\mathrm{O}\left(\mathrm{K}^{2} \mathrm{~T}\right)\)
Space: \(\mathrm{O}(\mathrm{KT}) \quad \longleftarrow\) Linear in length of sequence

\section*{Self-Supervised Learning from WIkipedia}
\begin{tabular}{|c|c|c|}
\hline & & [Wu et.al. CIKM'07] \\
\hline Rand was hom Alisa Znovyama Rosenhaum (Rusiian: Aтиса Зиновьянна Розанбаун) in 1995, inta a middleclass family living in Seint Petershurg, Russia, the eldest of three daughters (Alisa, Natasha, and Nare), \({ }^{[8]}\) to Unowy Zacharowich Rasenbaum and Anna Borisowna & Bonn & \begin{tabular}{l}
February 2,1905 \\
Seirt Petershurg, Russia \\
March 6, 1 sas (aged 77) \\
Now York Cly, Lhlted States
\end{tabular} \\
\hline
\end{tabular}


The Forward Algorithm


What is Open Information Extraction?
\begin{tabular}{lll} 
& Traditional IE & Open IE \\
\hline Input & Corpus + Labeled Data & \begin{tabular}{l} 
Corpus + Domain-Independent \\
Methods
\end{tabular} \\
\hline Relations & Specified In Advance & Discovered Automatically \\
\hline Complexity & \begin{tabular}{l}
\(O(D, R)\) \\
\(D\) documents, \(R\) relations
\end{tabular} & \begin{tabular}{l}
\(O(D)\) \\
\(D\) documents
\end{tabular} \\
\hline
\end{tabular}

\section*{CSE 454 Overview}

Human Comp
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Cool Uls (Zoetrope \& Revisiting)} \\
\hline \multicolumn{2}{|l|}{Open IE} & & Adverts \\
\hline Parsing \& POS Tags & \multirow[t]{3}{*}{\[
\begin{aligned}
& \sum_{\infty} \\
& \stackrel{0}{0} \\
& -1 \\
& \frac{\tilde{O}}{\mathscr{D}}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\multirow{3}{*}{Search Engines}} \\
\hline Information Extraction & & & \\
\hline Supervised Learning & & & \\
\hline \multicolumn{4}{|l|}{HTTP, HTML, Scaling \& Crawling} \\
\hline
\end{tabular}


\section*{How Motivate People to Help?}
- Money
- Fun
- Altruism
- Esteem
- Self-Interest



How Motivate People to Help?
- Pay them...


\section*{Find Substitutable Words}

In the sentence below, what words or phrases could replace the bolded word without changing the meaning? F
Example:
In most countries children are required by law to attend school.
You might enter:
kid
youngster
pupil
young person
Try to enter single words or short phrases like "water bottle" or "post office." You are encouraged to use the ta
station".
station".
Avoid descriptive phrases, e.g. "a container you drink out of," or "a place you mail things from" unless you abs Further, tell us how easy or difficult it is to assign one of several possible meanings for the bolded word in the

Your sentence is: The term silver dollar is often used for any large white metal coin issued by the United States with a face value of one dollar; although purists insist that a dollar is not silver unless it contains some of that metal .

Enter one term per box.

Fast \& Cheap, but is it Good?
[Snow et al. EMNLP-08





Figure 1: Non-expert correlation for affect recognition

In our experiment we ask for 10 annotations each of the full 30 word pairs, at an offered price of \(\$ 0.02\) for each set of 30 annotations (or, equivalently, at the rate of 1500 annotations per USD). The most surprising aspect of this study was the speed with which it was completed; the task of 300 annotations was completed by 10 annotators in less than 11 minutes ... 1724 annotations / hour.
How Cheap + Fast?

Who are those Turkers?


\section*{Iterative Improvement}


A parial view of a pocket calculator together with some coins and a pen.

\begin{tabular}{|l|}
\hline Motivating People \\
•Money \\
\(\bullet\) Fun \\
\\
\\
\\
\\
\hline
\end{tabular}

\section*{IMAGE SEARCH ON THE WEB}


\section*{ACCESSIBILITY}

LESS THAN 10\% OF THE WEB IS ACCESSIBLE TO THE VISUALLY IMPAIRED

REASON: MOST IMAGES DON'T HAVE A CAPTION

\section*{DESIDERATA}

A METHOD THAT CAN LABEL
ALL IMAGES ON THE WEB FAST AND CHEAP

THE ESP GAME
PLAYER 1


GUESSING: CAR GUESSING: HAT

GUESSING: KID
SUCCESS! YOU AGREE ON CAR


GUESSING: BOY GUESSING: CAR SUCCESS! YOU AGREE ON CAR

THE ESP GAME IS FUN
3.2 MILLION LABELS WITH 22,000 PLAYERS

MANY PEOPLE PLAY OVER 20 HOURS A WEEK

\section*{9 BILLION MAN-HOURS OF SOLITAIRE WERE PLAYED IN 2003 \\ EMPIRE STATE BUILDING \\ 7 MILLION MAN-HOURS (6.8 HOURS OF SOLITAIRE) \\ PANAMA CANAL 20 MILLION MAN-HOURS (LESS THAN A DAY OF SOLITAIRE)}

\section*{Next-Generation Search}
- Information Extraction
- <Einstein, Born-In, Germany>
- <Einstein, ISA, Physicist>
- <Einstein, Lectured-At,
- <IAS, In, New-Jersey>
- <New-Jersey, In, United-States>
- Ontology
- Physicist (x) \(\rightarrow\) Scientist( x )
- Inference
- Einstein = Einstein
stein

\section*{GWAP}
- Problem?
```

