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About me

▪ Aaron Kimball (M.S. 2008)

▪ Designed/taught CSE 490H

▪ ―Problem solving on large-scale clusters‖ a.k.a. ―The Hadoop 
course‖ a.k.a. ―The Google course‖

▪ I now work for Cloudera (―The Commercial Hadoop Company‖)



A lecture about… 

―I suspect that an overview on cloud computing that hits highlights 
on GFS, hadoop, bigtable, Ec2 would be great.  (Or a subset or 
extended subset of those topics) would be appreciated by the 
students.‖

– email from Dan 10/29/09



An outline?

▪ Big Data (Corporations are packrats)

▪ Big Computations (If you want it done right…)

▪ Big Computing Environments



Databases

▪ MySQL, Oracle, SQL Server…

▪ Store structured data along with large amount of metadata

▪ A finite set of fields per record with well-defined types

▪ Lots of bookkeeping information (table statistics, indices over 
one or more columns, constraints on data integrity…)

▪ Really cool data structures! (e.g., B-Trees)

▪ Pro: REALLY FAST queries of certain types

▪ Metadata can be tuned to make certain queries better

▪ Con: Metadata has time and space costs to create, maintain. Must 
also predict / control the schema of the information

▪ ... Take CSE 444 for more information



Example table

mysql> use corp;

Database changed

mysql> describe employees;
+------------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment | 
| firstname | varchar(32) | YES | | NULL | | 
| lastname | varchar(32) | YES | | NULL | | 
| jobtitle | varchar(64) | YES | | NULL | | 
| start_date | date | YES | | NULL | | 
| dept_id | int(11) | YES | | NULL | | 
+------------+-------------+------+-----+---------+----------------+



Some things databases are good at

▪ Using an index to look up a particular row

▪ Grouping together rows with a shared key

▪ And applying ―aggregation‖ functions (SUM, AVG, STDDEV…)

▪ Enforcing data quality

▪ e.g.: no duplicates; type-safety; other business-logic constraints



The problems… 

▪ A hard drive writes at 50—60 MB/sec.

▪ … but only if you’re writing in a straight line

▪ Maintaining indexed data may drop this by 10x or more

▪ Buffering / delayed writes can help recover this

▪ Performing database operations in parallel is complicated, and 
scalability is challenging to implement correctly

▪ Databases hold max 10 TB; queries can scan ~10%



Bigger data, better processing

▪ How do we store 1,000x as much data?

▪ How do we process data where we don’t know the schema in 
advance?

▪ How do we perform more complicated processing?

▪ Natural language processing, machine learning, image 
processing, web mining…

▪ How do we do this at the rate of TB/hour?



What we need

▪ An efficient way to decompose problems into parallel parts

▪ A way to read and write data in parallel

▪ A way to minimize bandwidth usage

▪ A reliable way to get computation done



What does it mean to be reliable?

Ken Arnold, CORBA designer*:

―Failure is the defining difference between distributed and local 
programming‖

*(Serious Über-hacker)



Reliability Demands

▪ Support partial failure

▪ Total system must support graceful decline in application 
performance rather than a full halt



Reliability Demands

▪ Data Recoverability

▪ If components fail, their workload must be picked up by still-
functioning units



Reliability Demands

▪ Individual Recoverability

▪ Nodes that fail and restart must be able to rejoin the group 
activity without a full group restart



Reliability Demands

▪ Consistency

▪ Concurrent operations or partial internal failures should not 
cause externally visible nondeterminism



Reliability Demands

▪ Scalability

▪ Adding increased load to a system should not cause outright 
failure, but a graceful decline

▪ Increasing resources should support a proportional increase in 
load capacity



A Radical Way Out…

▪ Nodes talk to each other as little as possible – maybe never

▪ ―Shared nothing‖ architecture

▪ Programmer should not explicitly be allowed to communicate 
between nodes

▪ Data is spread throughout machines in advance, computation 
happens where it’s stored.



Locality

▪ Master program divvies up tasks based on location of data: tries 
to have map tasks on same machine as physical file data, or at 
least same rack

▪ Map task inputs are divided into 64—128 MB blocks: same size 
as filesystem chunks

▪ Process components of a single file in parallel



Fault Tolerance

▪ Tasks designed for independence

▪ Master detects worker failures

▪ Master re-executes tasks that fail while in progress

▪ Restarting one task does not require communication with other 
tasks

▪ Data is replicated to increase availability, durability



How MapReduce is Structured

▪ Functional programming meets distributed computing

▪ A batch data processing system

▪ Factors out many reliability concerns from application logic



MapReduce Provides:

▪ Automatic parallelization & distribution

▪ Fault-tolerance

▪ Status and monitoring tools

▪ A clean abstraction for programmers



Programming Model

▪ Borrows from functional programming

▪ Users implement interface of two functions:

▪ map  (in_key, in_value) -> 

(intermediate_key, int_value) list

▪ reduce (intermediate_key, int_value list) ->

(out_key, out_value) list



map  (in_key, in_value) -> 

(intermediate_key, int_value) list

map



reduce

reduce (intermediate_key, int_value list) ->

(out_key, out_value) list

returned

initial



Example: Filter Mapper

let map(k, v) =

if (isPrime(v)) then emit(k, v)

(“foo”, 7)  (“foo”, 7)

(“test”, 10)  (nothing)



Example: Sum Reducer

let reduce(k, vals) = 

sum = 0

foreach int v in vals:

sum += v

emit(k, sum)

(“A”, [42, 100, 312])  (“A”, 454)

(“B”, [12, 6, -2])  (“B”, 16)
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Example: Count word occurrences
map(String input_key, String input_value):

// input_key: document name 

// input_value: document contents 

for each word w in input_value: 

emit(w, 1); 

reduce(String output_key, Iterator<int> 
intermediate_values): 

// output_key: a word 

// output_values: a list of counts 

int result = 0; 

for each v in intermediate_values: 

result += v;

emit(output_key, result); 



That’s how to process data in parallel

▪ … How to store all this data?

▪ HDFS / GFS



Storage assumptions

▪ High component failure rates

▪ Inexpensive commodity components fail all the 
time

▪ ―Modest‖ number of HUGE files

▪ Just a few million

▪ Each is 100MB or larger; multi-GB files typical

▪ Files are write-once (maybe appended-to)

▪ Large streaming reads

▪ High sustained throughput favored over low latency



GFS/HDFS Design Decisions

▪ Files stored as blocks

▪ Much larger size than most filesystems (default is 64MB)

▪ Reliability through replication

▪ Each block replicated across 3+ DataNodes

▪ Single master (NameNode) coordinates access, metadata

▪ Simple centralized management

▪ No data caching

▪ Little benefit due to large data sets, streaming reads

▪ Familiar interface, but customize the API

▪ Simplify the problem; focus on distributed apps



GFS Architecture

Figure from ―The Google File System,‖ 

Ghemawat et. al., SOSP 2003



The key insight…

▪ DataNodes (storing blocks of files) are the same machines as 
MapReduce worker nodes

▪ When scheduling tasks, MapReduce picks nodes based on where 
data already is resident

▪ Data replication increases durability, also improves scheduling 
efficiency



Cloud computing: broader than any one app

Cloud computing is a method to address

scalability and availability concerns

for enterprise applications.



An evolving ecosystem
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Hardware as a service: virtualization

▪ Amazon EC2: Machines for rent by the hour, on demand.

▪ But you don’t necessarily get a full machine (maybe just a slice)

▪ Google AppEngine: We give you ―cycles,‖ who knows where



Virtualization in a nutshell

▪ Just a layer of software that responds to device drivers (hard drive, 
Ethernet, graphics) like the drivers/OS expect

▪ Software layer then does ―something reasonable‖ with underlying 
actual resources



A fully-virtualized machine

▪ All applications run in a VM

▪ One or more VMs may share machine



Clouds: high-level
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Key promises of virtualization

▪ Users can get more machines in on-demand fashion

▪ Interface to new virtual nodes is through software API

▪ So software on existing nodes can recognize over/underloading 
and make requests to provider to adjust on the fly.

▪ EC2 gives you more explicit control in terms of virtual nodes

▪ AppEngine takes this to the next level and does not expose any 
hardware to you whatsoever

▪ Makes web application development simpler. Makes high-
performance system design nearly impossible

▪ My next wish: explicit network topology control…



Some concluding summary…

▪ Processing lots of data requires lots of machines

▪ Using lots of machines in parallel requires

▪ Some infrastructure to manage it for you (Hadoop)

▪ The ability to decompose a problem into independent subtasks

▪ High performance requires data locality

▪ (It’s not processing data that’s slow. It’s moving data that is.)



Want to play with Hadoop?

▪ We’ve got a virtual machine available online

▪ Eclipse, and Hadoop, some exercises, and a tutorial all set up

▪ Download: http://cloudera.com/hadoop-training-virtual-machine

▪ You’ll need VMWare Player/Fusion to run it

▪ It’s about a 1 GB download, 4 GB unpacked (so get this in 002) ;)



Want a job this summer?

▪ No promises but last year we had a bunch of interns

▪ We’ll probably need some more

▪ You get to play with Hadoop, other distributed systems, EC2…

▪ The catch: We’re pretty bad at making commitments this far out. 
Talk to us again around March/April.

▪ Want a full-time job? We’ve got a bunch of those :)

▪ Send resumes/inquiries/etc to aaron@cloudera.com



Thanks for listening

Questions: aaron@cloudera.com
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