

Some Cloud Computing Topics
CSE 454

Aaron Kimball

Cloudera Inc.

3 Dec 2009

About me

▪ Aaron Kimball (M.S. 2008)

▪ Designed/taught CSE 490H

▪ ―Problem solving on large-scale clusters‖ a.k.a. ―The Hadoop
course‖ a.k.a. ―The Google course‖

▪ I now work for Cloudera (―The Commercial Hadoop Company‖)

A lecture about…

―I suspect that an overview on cloud computing that hits highlights
on GFS, hadoop, bigtable, Ec2 would be great. (Or a subset or
extended subset of those topics) would be appreciated by the
students.‖

– email from Dan 10/29/09

An outline?

▪ Big Data (Corporations are packrats)

▪ Big Computations (If you want it done right…)

▪ Big Computing Environments

Databases

▪ MySQL, Oracle, SQL Server…

▪ Store structured data along with large amount of metadata

▪ A finite set of fields per record with well-defined types

▪ Lots of bookkeeping information (table statistics, indices over
one or more columns, constraints on data integrity…)

▪ Really cool data structures! (e.g., B-Trees)

▪ Pro: REALLY FAST queries of certain types

▪ Metadata can be tuned to make certain queries better

▪ Con: Metadata has time and space costs to create, maintain. Must
also predict / control the schema of the information

▪ ... Take CSE 444 for more information

Example table

mysql> use corp;

Database changed

mysql> describe employees;
+------------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
firstname	varchar(32)	YES		NULL	
lastname	varchar(32)	YES		NULL	
jobtitle	varchar(64)	YES		NULL	
start_date	date	YES		NULL	
dept_id	int(11)	YES		NULL	
+------------+-------------+------+-----+---------+----------------+

Some things databases are good at

▪ Using an index to look up a particular row

▪ Grouping together rows with a shared key

▪ And applying ―aggregation‖ functions (SUM, AVG, STDDEV…)

▪ Enforcing data quality

▪ e.g.: no duplicates; type-safety; other business-logic constraints

The problems…

▪ A hard drive writes at 50—60 MB/sec.

▪ … but only if you’re writing in a straight line

▪ Maintaining indexed data may drop this by 10x or more

▪ Buffering / delayed writes can help recover this

▪ Performing database operations in parallel is complicated, and
scalability is challenging to implement correctly

▪ Databases hold max 10 TB; queries can scan ~10%

Bigger data, better processing

▪ How do we store 1,000x as much data?

▪ How do we process data where we don’t know the schema in
advance?

▪ How do we perform more complicated processing?

▪ Natural language processing, machine learning, image
processing, web mining…

▪ How do we do this at the rate of TB/hour?

What we need

▪ An efficient way to decompose problems into parallel parts

▪ A way to read and write data in parallel

▪ A way to minimize bandwidth usage

▪ A reliable way to get computation done

What does it mean to be reliable?

Ken Arnold, CORBA designer*:

―Failure is the defining difference between distributed and local
programming‖

*(Serious Über-hacker)

Reliability Demands

▪ Support partial failure

▪ Total system must support graceful decline in application
performance rather than a full halt

Reliability Demands

▪ Data Recoverability

▪ If components fail, their workload must be picked up by still-
functioning units

Reliability Demands

▪ Individual Recoverability

▪ Nodes that fail and restart must be able to rejoin the group
activity without a full group restart

Reliability Demands

▪ Consistency

▪ Concurrent operations or partial internal failures should not
cause externally visible nondeterminism

Reliability Demands

▪ Scalability

▪ Adding increased load to a system should not cause outright
failure, but a graceful decline

▪ Increasing resources should support a proportional increase in
load capacity

A Radical Way Out…

▪ Nodes talk to each other as little as possible – maybe never

▪ ―Shared nothing‖ architecture

▪ Programmer should not explicitly be allowed to communicate
between nodes

▪ Data is spread throughout machines in advance, computation
happens where it’s stored.

Locality

▪ Master program divvies up tasks based on location of data: tries
to have map tasks on same machine as physical file data, or at
least same rack

▪ Map task inputs are divided into 64—128 MB blocks: same size
as filesystem chunks

▪ Process components of a single file in parallel

Fault Tolerance

▪ Tasks designed for independence

▪ Master detects worker failures

▪ Master re-executes tasks that fail while in progress

▪ Restarting one task does not require communication with other
tasks

▪ Data is replicated to increase availability, durability

How MapReduce is Structured

▪ Functional programming meets distributed computing

▪ A batch data processing system

▪ Factors out many reliability concerns from application logic

MapReduce Provides:

▪ Automatic parallelization & distribution

▪ Fault-tolerance

▪ Status and monitoring tools

▪ A clean abstraction for programmers

Programming Model

▪ Borrows from functional programming

▪ Users implement interface of two functions:

▪ map (in_key, in_value) ->

(intermediate_key, int_value) list

▪ reduce (intermediate_key, int_value list) ->

(out_key, out_value) list

map (in_key, in_value) ->

(intermediate_key, int_value) list

map

reduce

reduce (intermediate_key, int_value list) ->

(out_key, out_value) list

returned

initial

Example: Filter Mapper

let map(k, v) =

if (isPrime(v)) then emit(k, v)

(“foo”, 7)  (“foo”, 7)

(“test”, 10)  (nothing)

Example: Sum Reducer

let reduce(k, vals) =

sum = 0

foreach int v in vals:

sum += v

emit(k, sum)

(“A”, [42, 100, 312])  (“A”, 454)

(“B”, [12, 6, -2])  (“B”, 16)

Data store 1 Data store n
map

(key 1,

values...)

(key 2,

values...)
(key 3,

values...)

map

(key 1,

values...)

(key 2,

values...)
(key 3,

values...)

Input key*value

pairs

Input key*value

pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,

intermediate

values

key 2,

intermediate

values

key 3,

intermediate

values

final key 1

values

final key 2

values

final key 3

values

...

Example: Count word occurrences
map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

emit(w, 1);

reduce(String output_key, Iterator<int>
intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += v;

emit(output_key, result);

That’s how to process data in parallel

▪ … How to store all this data?

▪ HDFS / GFS

Storage assumptions

▪ High component failure rates

▪ Inexpensive commodity components fail all the
time

▪ ―Modest‖ number of HUGE files

▪ Just a few million

▪ Each is 100MB or larger; multi-GB files typical

▪ Files are write-once (maybe appended-to)

▪ Large streaming reads

▪ High sustained throughput favored over low latency

GFS/HDFS Design Decisions

▪ Files stored as blocks

▪ Much larger size than most filesystems (default is 64MB)

▪ Reliability through replication

▪ Each block replicated across 3+ DataNodes

▪ Single master (NameNode) coordinates access, metadata

▪ Simple centralized management

▪ No data caching

▪ Little benefit due to large data sets, streaming reads

▪ Familiar interface, but customize the API

▪ Simplify the problem; focus on distributed apps

GFS Architecture

Figure from ―The Google File System,‖

Ghemawat et. al., SOSP 2003

The key insight…

▪ DataNodes (storing blocks of files) are the same machines as
MapReduce worker nodes

▪ When scheduling tasks, MapReduce picks nodes based on where
data already is resident

▪ Data replication increases durability, also improves scheduling
efficiency

Cloud computing: broader than any one app

Cloud computing is a method to address

scalability and availability concerns

for enterprise applications.

An evolving ecosystem

Hardware Infrastructure

Language-level Infrastructure

Platform Infrastructure

Application Infrastructure

Breadth of

applicability

Rapid

development

in domain

Hardware as a service: virtualization

▪ Amazon EC2: Machines for rent by the hour, on demand.

▪ But you don’t necessarily get a full machine (maybe just a slice)

▪ Google AppEngine: We give you ―cycles,‖ who knows where

Virtualization in a nutshell

▪ Just a layer of software that responds to device drivers (hard drive,
Ethernet, graphics) like the drivers/OS expect

▪ Software layer then does ―something reasonable‖ with underlying
actual resources

A fully-virtualized machine

▪ All applications run in a VM

▪ One or more VMs may share machine

Clouds: high-level

Provisioning

node

1) Requests for more

service instances

Service

node

Service

node

Service

node

Many available

nodes...

2) Commands to allocate

new virtual instances

3) Services provided to

clients outside of cloud

Key promises of virtualization

▪ Users can get more machines in on-demand fashion

▪ Interface to new virtual nodes is through software API

▪ So software on existing nodes can recognize over/underloading
and make requests to provider to adjust on the fly.

▪ EC2 gives you more explicit control in terms of virtual nodes

▪ AppEngine takes this to the next level and does not expose any
hardware to you whatsoever

▪ Makes web application development simpler. Makes high-
performance system design nearly impossible

▪ My next wish: explicit network topology control…

Some concluding summary…

▪ Processing lots of data requires lots of machines

▪ Using lots of machines in parallel requires

▪ Some infrastructure to manage it for you (Hadoop)

▪ The ability to decompose a problem into independent subtasks

▪ High performance requires data locality

▪ (It’s not processing data that’s slow. It’s moving data that is.)

Want to play with Hadoop?

▪ We’ve got a virtual machine available online

▪ Eclipse, and Hadoop, some exercises, and a tutorial all set up

▪ Download: http://cloudera.com/hadoop-training-virtual-machine

▪ You’ll need VMWare Player/Fusion to run it

▪ It’s about a 1 GB download, 4 GB unpacked (so get this in 002) ;)

Want a job this summer?

▪ No promises but last year we had a bunch of interns

▪ We’ll probably need some more

▪ You get to play with Hadoop, other distributed systems, EC2…

▪ The catch: We’re pretty bad at making commitments this far out.
Talk to us again around March/April.

▪ Want a full-time job? We’ve got a bunch of those :)

▪ Send resumes/inquiries/etc to aaron@cloudera.com

Thanks for listening

Questions: aaron@cloudera.com

(c) 2008 Cloudera, Inc. or its licensors. "Cloudera" is a registered trademark of Cloudera, Inc.. All rights reserved. 1.0

