Machine Reading From Wikipedia to the Web

Daniel S. Weld

Department of Computer Science & Engineering University of Washington Seattle, WA, USA

todo

- More on bootstrapping to the web
 - · Retrain too brief
- Results for shrinkage independent of retraining

Raphael

Stefan Schoenmackers

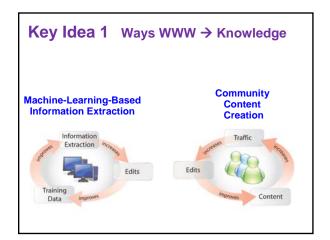
Fei

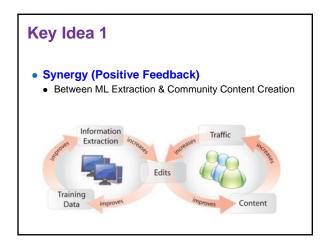
And... Eytan Adar, Saleema Amershi, Oren Etzioni, James Fogarty, Xiao Ling, Kayur Patel

Overview

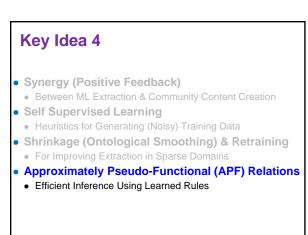
- Extracting Knowledge from the Web
 - Facts
 - Ontology
 - Inference Rules
- Using it for Q/A

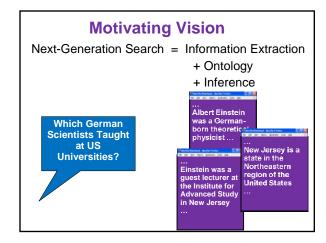
Key Ideas

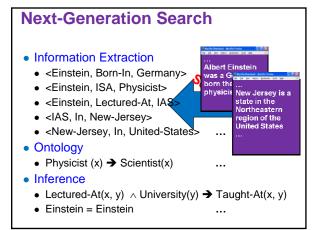


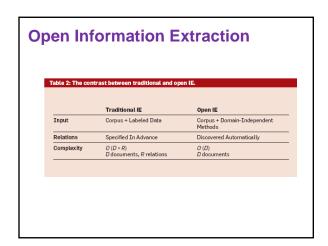


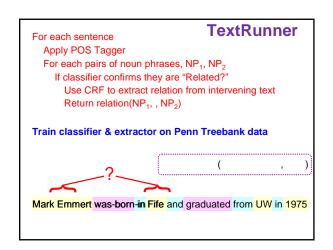
Synergy (Positive Feedback) Between ML Extraction & Community Content Creation Self Supervised Learning Heuristics for Generating (Noisy) Training Data Shrinkage (Ontological Smoothing) & Retraining For Improving Extraction in Sparse Domains person performer actor comedian

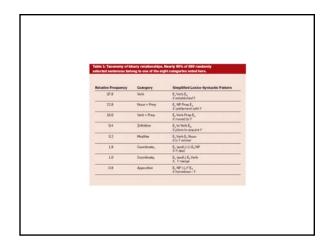


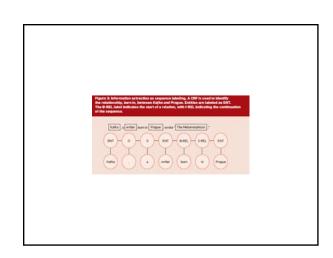












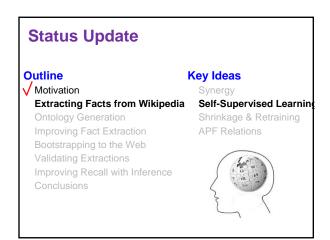
Why Wikipedia?

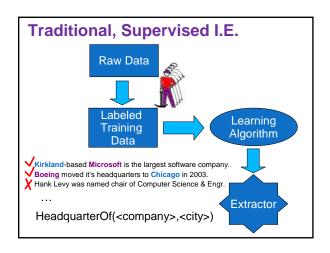
- Pros
 - Comprehensive
 - High Quality [Giles Nature 05]
 - Useful Structure
- Cons
 - Natural-Language
 - Missing Data
 - Inconsistent
 - Low Redundancy

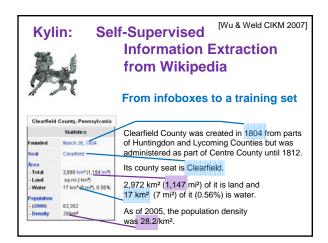


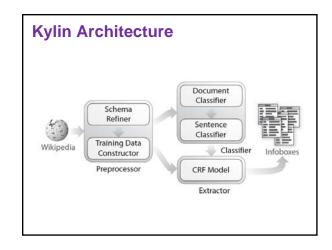
Wikipedia Structure

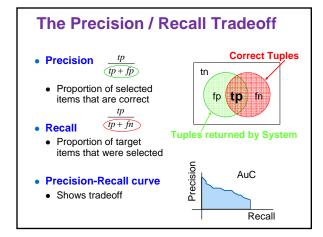
- Unique IDs & Links
- Infoboxes
- Categories & Lists
- First Sentence
- Redirection pages
- Disambiguation pages
- Revision History
- Multilingual



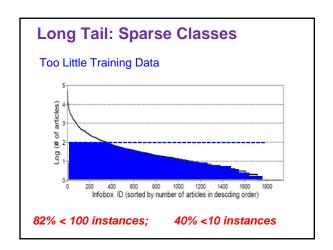


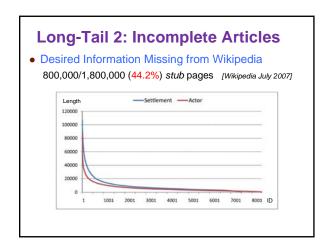


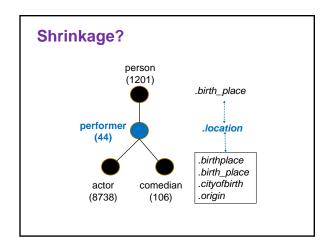


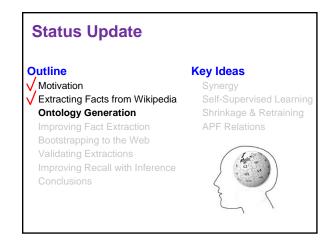


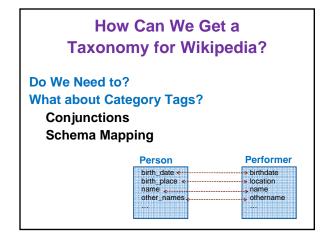
Preliminary Evaluation Kylin Performed Well on Popular Classes: Precision: mid 70% ~ high 90% Recall: low 50% ~ mid 90% ... But Floundered on Sparse Classes (Too Little Training Data) Is this a Big Problem?



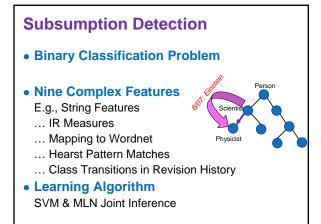


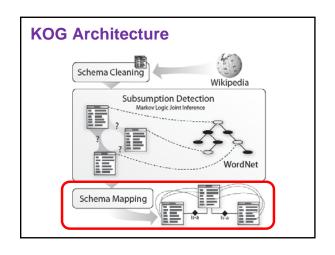


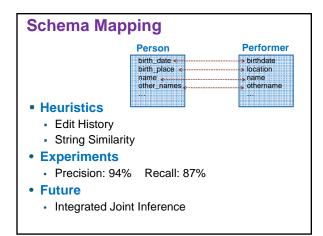


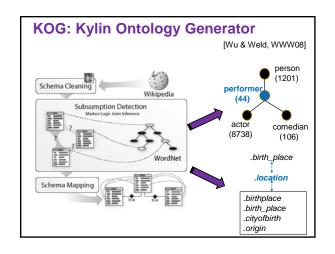


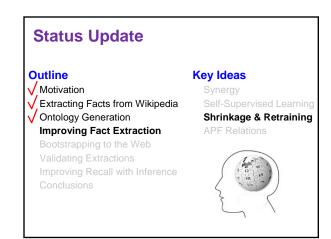


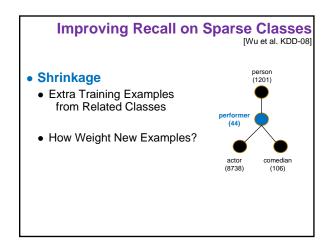












Improving Recall on Sparse Classes

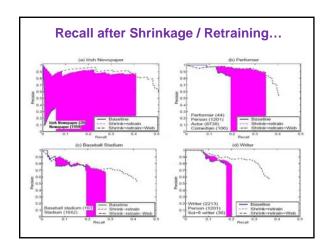
[Wu et al. KDD-08]

Retraining

- Compare Kylin Extractions with Tuples from Textrunner
- Additional Positive Examples
- Eliminate False Negatives

TextRunner [Banko et al. IJCAI-07, ACL-08]

- Relation-Independent Extraction
- Exploits Grammatical Structure
- CRF Extractor with POS Tag Features



Status Update

Outline

✓ Motivation

Extracting Facts from WikipediaOntology Generation

✓ Improving Fact Extraction Bootstrapping to the Web

Validating Extractions
Improving Recall with Inference
Conclusions

Key Ideas

Synergy Self-Supervised Learning Shrinkage & Retraining APF Relations

Long-Tail 2: Incomplete Articles

Desired Information Missing from Wikipedia
 800,000/1,800,000(44.2%) stub pages [July 2007 of Wikipedia]

Length — Settlement — Actor

120000

80000

40000

200000

1 10001 2001 3001 4001 5001 6001 7001 8001 |D

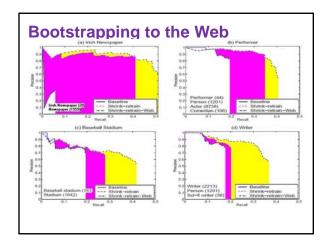
Bootstrapping to the Web

[Wu et al. KDD-08]

- Extractor Quality Irrelevant
 - If no information to extract...
 - 44% of Wikipedia Pages = "stub"
- Instead, ... Extract from Broader Web
- Challenges
 - How maintain high precision?
 - Many Web pages noisy,
 - Describe multiple objects

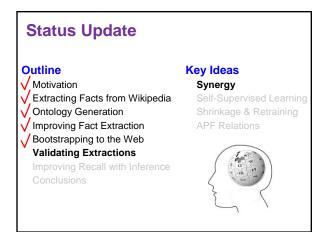
Extracting from the Broader Web

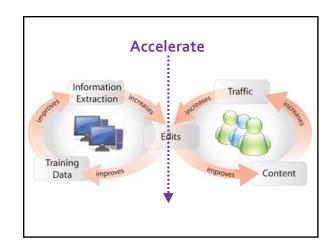
- 1) Send Query to Google
 Object Name + Attribute Synonym
- 2) Find Best Region on the Page Heuristics > Dependency Parse
- 3) Apply Extractor
- 4) Vote if Multiple Extractions



Problem

- Information Extraction is Still Imprecise
 - Do Wikipedians Want 90% Precision?
- How Improve Precision?
 - People!





Contributing as a Non-Primary Task [Hoffman CHI-09]

- Encourage contributions
- Without annoying or abusing readers

Designed Three Interfaces

- Popup (immediate interruption strategy)
- **Highlight** (negotiated interruption strategy)
- Icon
 (negotiated interruption strategy)

How do you evaluate these UIs?

Contribution as a non-primary task

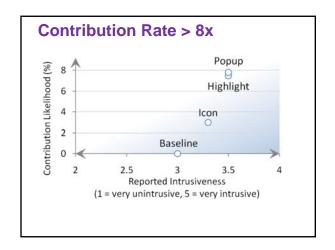
Can lab study show if interfaces increase spontaneous contributions?

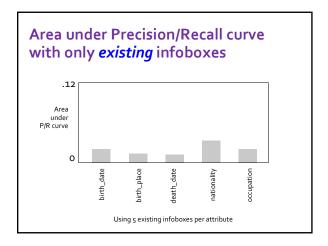
Search Advertising Study Deployed interfaces on Wikipedia proxy 2000 articles One ad per article Ray Bradbury - Wikipedia Get enhanced Wikipedia content for Ray Bradbury, intelligent-wikipedia org

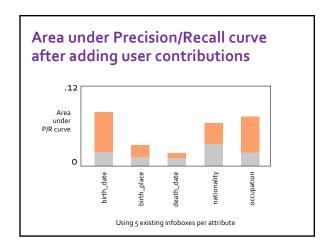
Search Advertising Study Select interface round-robin Track session ID, time, all interactions Questionnaire pops up 60 sec after page loads

Search Advertising Study

- Used Yahoo and Google
- Deployment for ~ 7 days
 - ~ 1M impressions
 - 2473 visitors







Status Update Outline Motivation Extracting Facts from Wikipedia Ontology Generation Improving Fact Extraction Bootstrapping to the Web Validating Extractions Improving Recall with Inference Conclusions Key Ideas Synergy Self-Supervised Learning Shrinkage & Retraining APF Relations

Why Need Inference?

- What Vegetables Prevent Osteoporosis?
- No Web Page Explicitly Says:

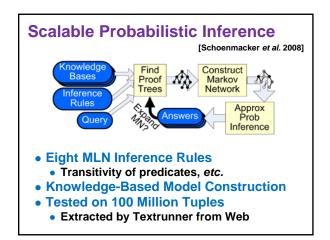
"Kale is a vegetable which prevents Osteoporosis"

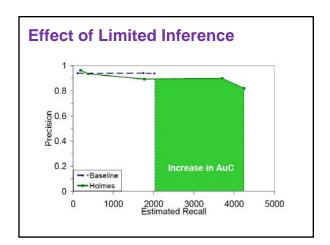
But some say

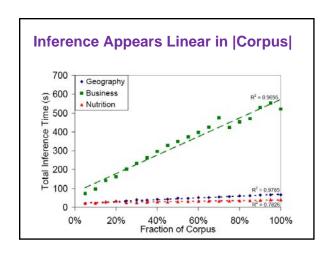
- "Kale is a vegetable" ...
- "Kale contains calcium" ...
- "Calcium prevents osteoporosis"

Three Part Program

- 1) Scalable Inference with Hand Rules
 In small domains (5-10 entity classes)
- 2) Learning Rules for Small Domains
- **3) Scaling Learning to Larger Domains** E.g., 200 entity classes



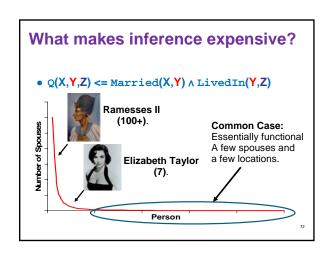




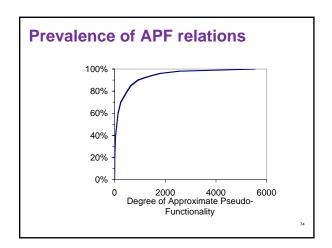
How Can This Be True?

- Q(X,Y,Z) <= Married(X,Y) \(\text{LivedIn}(Y,Z) \)
- Worst Case: Some person y' married everyone, and lived in every place:

$$|Q(X,y',Z)| = |Married|^{*}|LivedIn| = O(n^{2})$$



Approximately Pseudo-Functional Relations E.g. Married(X,Y) Most Y have only 1 spouse mentioned People in y_a have at most a constant k_M spouses each People in y_a have at most k_M *log $|y_a|$ spouses in total Function of yPerson 73



Learning Rules

- Work in Progress
 - Tight Bias on Rule Templates

Entailment $R_1(X,Y):-R_2(X,Y)$ Homophily $R_1(X,Y):-R_2(X,Z)\wedge R_2(Y,Z)$ Generalized transitivity $R_1(X,Z):-R_2(X,Y)\wedge R_3(Y,Z)$

- Type Constraints on Shared Variables
- Mechanical Turk Validation
 20% → 90+% precision
- Learned Rules Beat Hand-Coded
 - On small domains
- Now Scaling to 200 Entity Classes

Status Update

Outline

✓ Motivation

Extracting Facts from Wikipedia

Ontology Generation

✓ Improving Fact Extraction
✓ Bootstrapping to the Web

Validating Extractions

Improving Recall with Inference Conclusions

Key Ideas

Synergy Self-Supervised Learning Shrinkage & Retraining APF Relations

Motivating Vision Next-Generation Search = Information Extraction + Ontology + Inference Which German Scientists Taught at US Universities? Which German Scientists Taught at US Universities? Wew Jersey is a state in the Northeastern region of the United States Wortheastern region of Mayanced Study in New Jersey ...

Conclusion

Self-Supervised Extraction from Wikipedia

Training on Infoboxes
Works well on popular classes
Improving Recall – Shrinkage, Retraining, Web Extraction
High precision & recall - even on sparse classes, stub articles
Community Content Creation

- Automatic Ontology Generation Probabilistic Joint Inference
- Scalable Probabilistic Inference for Q/A Simple Inference - Scales to Large Corpora Tested on 100 M Tuples

Conclusion

• Extraction of Facts from Wikipedia & Web

Self-Supervised Training on Infoboxes Improving Recall – Shrinkage, Retraining, Need for Humans to Validate

• Automatic Ontology Generation

Probabilistic Joint Inference

• Scalable Probabilistic Inference for Q/A

Simple Inference - Scales to Large Corpora Tested on 100 M Tuples

Key Ideas

- Synergy (Positive Feedback)
 - Between ML Extraction & Community Content Creation
- Self Supervised Learning
 - · Heuristics for Generating (Noisy) Training Data
- Shrinkage & Retraining
- For Improving Extraction in Sparse Domains
- Aproximately Pseudo-Functional Relations
 - Efficient Inference Using Learned Rules

Related Work

- Unsupervised Information Extraction
- SNOWBALL [Agichtein & Gravano ICDL00]
- MULDER [Kwok et al. TOIS01]
- AskMSR [Brill et al. EMNLP02]
- KnowltAll [Etzioni et al. WWW04, ...]
- TextRunner [Banko et al. IJCAI07, ACL-08]
- KNEXT [VanDurme et al. COLING-08]
- WebTables [Cafarella et al. VLDB-08]
- Ontology Driven Information Extraction
 - SemTag and Seeker [Dill WWW03]
 - PANKOW [Cimiano WWW05]
 - OntoSyphon [McDowell & Cafarella ISWC06]

Related Work II

- Other Uses of Wikipedia
 - Semantic Distance Measure [Ponzetto&Strube07]
 - Word-Sense Disambiguation [Bunescu&Pasca06, Mihalcea07]
 - Coreference Resolution [Ponzetto&Strube06, Yang&Su07]
 - Ontology / Taxonomy [Suchanek07, Muchnik07]
 - Multi-Lingual Alignment [Adafre&Rijke06]
 - Question Answering [Ahn et al.05, Kaisser08]
 - Basis of Huge KB [Auer et al.07]

Thanks!

In Collaboration with

Eytan Adar Saleema Amershi
Oren Etzioni James Fogarty
Raphael Hoffmann Shawn Ling
Kayur Patel Stef Schoenmackers

Funding Support

Fei Wu

NSF, ONR, DARPA, WRF TJ Cable Professorship, Google, Yahoo