Information Extraction from the World Wide Web

CSE 454

Based on Slides by

William W. Cohen

Carnegie Mellon University

Andrew McCallum

University of Massachusetts Amherst

From KDD 2003

Quick Review

Bayes Theorem

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Bayesian Categorization

- Let set of categories be $\{c_1, c_2, ... c_n\}$
- Let E be description of an instance.
- Determine category of E by determining for each c_i

$$P(c_i \mid E) = \frac{P(c_i)P(E \mid c_i)}{P(E)}$$

• P(E) can be determined since categories are complete and disjoint.

$$\sum_{i=1}^{n} P(c_i \mid E) = \sum_{i=1}^{n} \frac{P(c_i)P(E \mid c_i)}{P(E)} = 1$$

$$P(E) = \sum_{i=1}^{n} P(c_i) P(E \mid c_i)$$

Naïve Bayesian Motivation

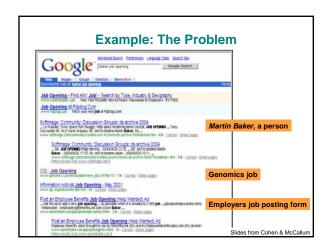
- Problem: Too many possible instances (exponential in m) to estimate all P(E | c_i)
- If we assume features of an instance are independent given the category (c) (conditionally independent).

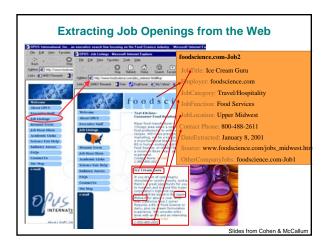
$$P(E \mid c_i) = P(e_1 \land e_2 \land \dots \land e_m \mid c_i) = \prod_{j=1}^m P(e_j \mid c_i)$$

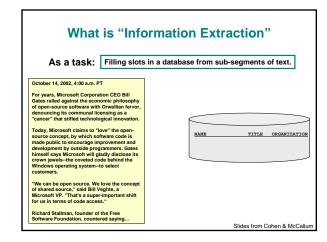
• Therefore, we then only need to know $P(e_j | c_i)$ for each feature and category.

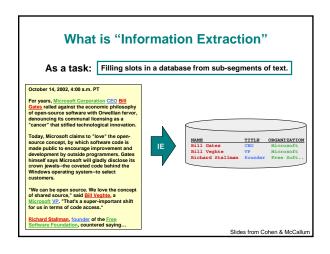
Information Extraction

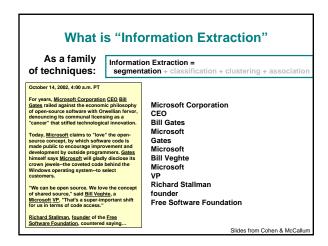
5

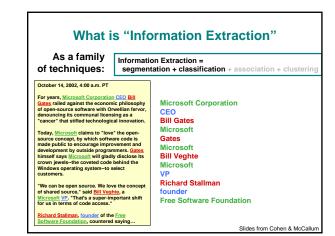


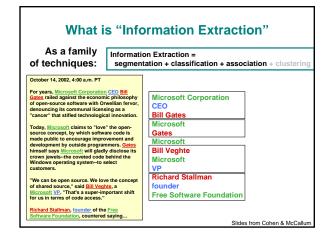


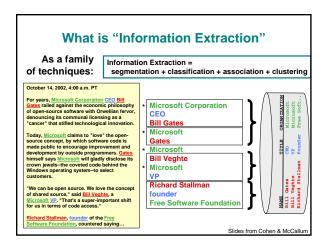








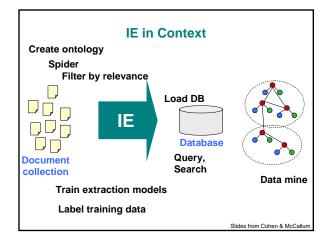




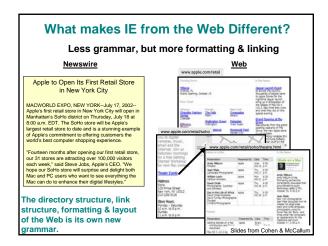
IE History

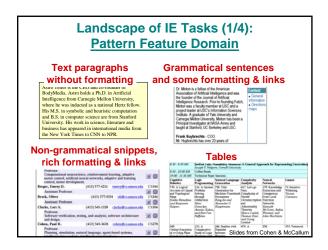
Pre-Web

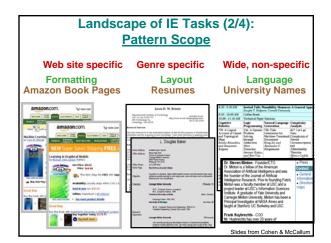
Web

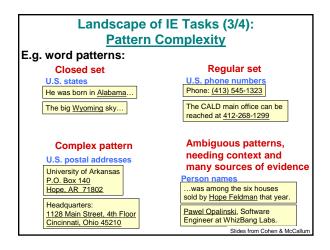


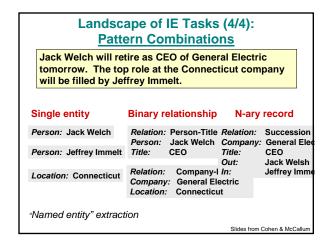
Mostly news articles De Jong's FRUMP [1982] Hand-built system to fill Schank-style "scripts" from news wire - Message Understanding Conference (MUC) DARPA ['87-'95], TIPSTER ['92-· Most early work dominated by hand-built models - E.g. SRI's FASTUS, hand-built FSMs. But by 1990's, some machine learning: Lehnert, Cardie, Grishman and then HMMs: Elkan [Leek '97], BBN [Bikel et al '98] AAAI '94 Spring Symposium on "Software Agents" Much discussion of ML applied to Web, Maes, Mitchell, Etzioni. Tom Mitchell's WebKB, '96 - Build KB's from the Web. Wrapper Induction - First by hand, then ML: [Doorenbos '96], [Soderland '96], [Kushmerick '97],... Slides from Cohen & McCallum

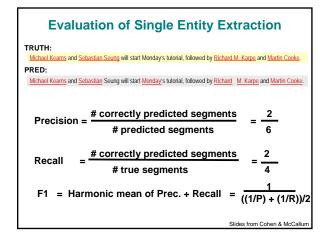








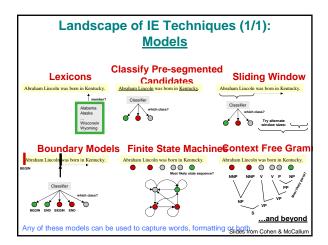




State of the Art Performance

- · Named entity recognition
 - Person, Location, Organization, ...
 - F1 in high 80's or low- to mid-90's
- · Binary relation extraction
 - Contained-in (Location1, Location2) Member-of (Person1, Organization1)
 - F1 in 60's or 70's or 80's
- Wrapper induction
 - Extremely accurate performance obtainable
 - Human effort (~30min) required on each site

Slides from Cohen & McCallun



Landscape: **Focus of this Tutorial** Pattern complexity closed set regular complex ambiguous Pattern feature domain words words + formatting formatting Pattern scope site-specific genre-specific general Pattern combinations entity binary n-ary lexicon regex window boundary FSM CFG Models Slides from Cohen & Mc

References

- (Biad et al 1697) Bald D. Miller, S.; Schmartz, R.; and Weischedel, R. Nymble: a high-performance learning name finder. In Proceedings of AVE/PV; p184-05.

 [Culiff & Mooney-Psoil, Culiff, M.E.; Mooney, R.; Relational Learning of Pattern-Match Rules for Information Extraction, in Proceedings of the Sciencer's National Conference on Artificial Intelligence (AVA-69), and for example of the Sciencer's National Conference on Artificial Intelligence (AVA-69).

 [Cohen, Kazal, Modellestar 2000] Cohen, W.; Kazat, H.; Modelsete, D.; Hardenings oft Information sources, Proceedings of the Swart International Vision (Average Accesses and Average Accesses and Average Accesses and Average Ave

- Semilary, in Proceedings or Alexander Common Demonstration (Common Demonstration (Common Demonstration (Common Demonstration (Common Demonstration (Common Demonstration Representation Language, LOCAM Transactions on Information Systems, 18(3).

 [Cohen, 2000] Cohen, W. Albandscale Stateship Features for Concept Learning from the Wes, Machine Learning: Proceedings of the Science Common Demonstration (Conference (Mr. 2000)).

 [Cohen, 2000] Cohen (Common Demonstration (Conference (Mr. 2000)).

 [Cohen, 2000] Cohen (Cohen Learning).

 [Cohen Learning).

 [Cohen, 2000] Cohen (Cohen Learning).

 [Cohen Learning).

- itly. | 2000], Freitag, D: Machine Learning for Information Extraction in Informal Domains, Machine Learning 39(2/3): 99-101

- [Freitag 2000] Freitag D. Machine Learning for Information Estraction in Informal Domains, Machine Learning 28(23): 99-91-01 [Oscilla, Establishment, 1:109] Fistago, D. Machinenick, D. Boosted Winapper Induction. Proceedings of the Sisteenth National Conference on Artificial Intelligence (AAAI-99) under McCallam A. Information estraction using infalfilm and shirningle. In Proceedings AAAI-99 Workshop on Machine Learning for Information Estraction. AAAI Technical Report W5-99-11. [Ostamenta, 200] Undermeick, 10 Winapper Induction: Edition of a depresiveness, Artificial Intelligence, 118pp 15-68). [Ostamenta, 200] Astermeick, 200