CSE 454

Indexing

Today’s News

* Amazon EC2:
— Price drop: 8.5 cents / hour for small linux instances.
— MySQL in the cloud
— Extra large instances (up to 68GB memory +8 big cores

e Why?

A Closeup View

10/27 - Indexing
10/29 - Alta Vista
Pagerank
11/3 — No class _
11/5 - Advertising @

Group
Meetings

Administrivia
* Read:

The Anatomy Of A Large-Scale Hypertextual Web
Search Engine, Sergey Brin and Lawrence Page,
Stanford University, 1999.

{An extended version of their WWW-98 paper}

» Next Group Meetings
Nov 3
Meet your milestones!

Class Overview

Other Cool Stuff
Query processing

Indexing

Standard Web Search Engine Architecture

store documents,
check for duplicates,

‘ extract links -
/

create an
inverted
index

inverted
index

Search
engine
servers

—

Vector Space Representation

information

Documents that are close to query
(measured using vector-space metric)
=> returned first.

slide from Raghavan, Schiitze, Larson

TF x IDF

w, =tfy *log(N /n,)

T, =term k in document D,
tf,, =frequency of term T, in document D,
idf, =inverse document frequency of termT, inC

idf, = |og(nﬂj

N =total number of documents in the collection C
n, =the number of documents in C that contain T,

slide from Raghavan, Schiitze, Larson

BM25

Popular and effective ranking algorithm
based on binary independence model
— adds document and query term weights

s log (ri+0.5)/ (R—7i+0.5) Lkt fi | (kotD)gfi
1€Q VO (n;—r;+0.5)/(N—n; —R+r,+0.5) K+f; ketqfs

— N = number of doc, n; = num containing term |
— R, r; = encode relevance info (if avail, otherwise = 0)
— f; = freq of term | in doc; qf; = freq in doc
— ki, k- and K are parameters, values set empirically
* k, weights tf component as f; increases
* k, = weights query term weight
* K normalizes

adapted from Croft, Metzler,

Strohman. © Addison Wesley

Simple Formulas

But How Process Efficiently?

Copyright © Weld 2002-2007 10

Retrieval

Document-term matrix

ot oty nf
d; Wy Wip oo Wy oo Wy, I7[d]
d, Wy Wop oo Wy oo Wy, 1/]dy|
d; Wig Wi oo Wy e Wi 1/dy|
Ay Wi Wop oo Wy oo Wy 1dy

w; is the weight of term t; in document d;
Most w;;’s will be zero.

Copyright © Weld 2002-2007 1

Naive Retrieval

Consider query Q = (dy, dy, ---, G, -, Gy), nf=1/|q].
How evaluate Q?

(i.e., compute the similarity between g and every document)?
Method 1: Compare Q with every doc.
Document data structure:

di ((t, Wiy, (G W)y - (G W), (s Wi), L]di])
— Only terms with positive weights are kept.
— Terms are in alphabetic order.

Query data structure:
Q . ((tll ql)! (tZ! qZ)v e (tJ! q])! e (tm! qm)1 1/|q|)

Copyright © Weld 2002-2007 12

Naive Retrieval (continued)
Method 1: Compare q with documents directly

initialize all sim(q, d;) = 0;
for each document d; (i=1, ..., n)

{foreachterm¢t (j=1,...,m)

if t; appears in both ¢ and d|
sim(q, d;) += g; *wj;
sim(q, d;) = sim(q, d;) =t&Aah *(1/|d{); }

sort documents in descending similarities;
display the top Kk to the user;

Copyright © Weld 2002-2007 13

Observation

Method 1 is not efficient

Needs to access most non-zero entries in doc-term matrix.
Solution: Use Index (Inverted File)

Data structure to permit fast searching.
Like an Index in the back of a text book.

Key words --- page numbers.

E.g, “Etzioni, 40, 55, 60-63, 89, 220"

Lexicon

Occurrences

Copyright © Weld 2002-2007 14

Search Processing (Overview)
1. Lexicon search
— E.g. looking in index to find entry
2. Retrieval of occurrences
— Seeing where term occurs

Si

mple Index for One Document se

A file is a list of words by position

First entry is the word in position 1 (first word)
Entry 4562 is the word in position 4562 (4562™ word)
Last entry is the last word

An inverted file is a list of positions by word!

3. Manipulation of occurrences

— Going to the right page

Copyright © Weld 2002-2007 15

a(l, 4, 40)

entry (11, 20, 31)
o) | INVERTED FILE |
list (5. 41) INVERTED FILE
position (9, 16, 26)
positions (44)

word (14, 19, 24, 29, 35, 45) aka “Index”
words (7)
4562 (21, 27)
Copyright © Weld 2002-2007 16

Requirements for Search

¢ Need index structure
— Must handle multiple documents
— Must support phrase queries
— Must encode TF/IDF values
— Must minimize disk seeks & reads

a(1,4,40)
entry (11, 20, 31) dp [wi Wip oo W
file (2, 38) + dy Wy Wy Wy,
list 5, 41)
position (9, 16, 26)
positions (44) dy Pwy wip owyy
Copyright © Weld 2002-2007 17

Index Size over Time

(millions of weh pages)

1500
1250 f
1000
750
PaEER
500 —
250
[eem— |
e
SEESRERE R R R RRRR80E8888EE
SRS EETR3RT3338535E55585S
— GG FAST mm A s [N e L

Now >> 50 Billion Pages

CoEzrigh(© Weld 2002-2007

Thinking about Efficiency

Clock cycle: 4 GHz
— Typically completes 2 instructions / cycle
« ~10 cycles / instruction, but pipelining & parallel execution
— Thus: 8 billion instructions / sec
Disk access: 1-10ms
— Depends on seek distance, published average is 5ms
— Thus perform 200 seeks / sec
— (And we are ignoring rotation and transfer times)

Disk is 40 Million times slower !

Copyright © Weld 2002-2007 19

How Store Index?
e Oracle Database?

* Unix File System?

The Solution

Inverted Files for Multiple Documents
— Broken into Two Files

Lexicon

— Hashtable on disk (one read)

— Nowadays: stored in main memory
Occurrence List

. Lexicon Occurrence List
— Stored on Disk
- “Google Filesystem” :a
add —————| doclD # pos,, ...
and
Copyright © Weld 2002-2007 21

Inverted Files for Multiple Documents

“jezebel” occurs
LEXICON | ooop occum ros: rose ... Simesmiisstsenss
3times in document 44,
| 4 times in document 56 . . .
'WORD NDOCS| PTR ‘ | | ‘ ‘ | | ‘ |
- 4] 6 1] 118] 2087] 3922 3981] 5002
bel 20|
Jezebe 1 42| 3| 215] 2291] 3010]
jezer 3 56] 4] 5] 22| 134] 992]
jezerit 1 \L‘
jeziah 1 [s66] 3] 203] 245] 287]
jeziel 1
ezt : | OCCURENCE
jezoar 1 | e INDEX
jezrahliah 1 |
jezreel 39 | —p——>[107] 4] 322] 354] 381] 405
| 232| 6| 15| 195| 248| 1897| 1951] 2192
677 1 481
I 713 3 42| 312] 802]

» One method. Alta Vista uses alternative

Copyright © Weld 2002-2007 22

Many Variations Possible

» Address space (flat, hierarchical)
* Record term-position information
Precalculate TF-IDF info

Stored header, font & tag info

» Compression strategies

Copyright © Weld 2002-2007 23

Other Features Stored in Index

* Page Rank e Page Classifiers (20+)
e Query word in color on page? - Spam
- #images on page ~ Adult
« #outlinks on page ~ Actor
— Celebrity
* URL length _ Athlete

 Page edit recency — Product / review

— Tech company
— Church
— Homepage

Amit Singhai says Google uses over 200 such features
[NY Times 2008-06-03]

Using Inverted Files
Some data structures:

Lexicon: a hash table for all terms in the collection.

Inverted file lists previously stored on disk.
Now fit in main memory

Copyright © Weld 2002-2007

Using Inverted Files

Several data structures:

2. For each term t;, create a list (occurrence file list)

that contains all document ids that have ;.
I(t) = { (dy, wy),
d,, ...
-}

- d; is the document id number of the it" document.
Weights come from freq of term in doc

Only entries with non-zero weights are kept.

Copyright © Weld 2002-2007

The Lexicon

» Grows Slowly (Heap’s law)
— O(nP) where n=text size; B is constant ~0.4 — 0.6
- E.g. for 1GB corpus, lexicon = 5Mb
— Can reduce with stemming (Porter algorithm)
» Store lexicon in file in lexicographic order

— Each entry points to loc in occurrence file
(aka inverted file list)

Copyright © Weld 2002-2007

More Elaborate Inverted File

Several data structures:

2. For each term t;, create a list (occurrence file list)

that contains all document ids that have t;.
I(t) = { (dy, freq, pos,, ... posy),
(dy, ...
.}

d; is the document id number of the it document.
Weights come from freq of term in doc

Only entries with non-zero weights are kept.

Copyright © Weld 2002-2007

Inverted files continued
More data structures:

3. Normalization factors of documents are pre-

computed and stored similarly to lexicon

nf[i] stores 1/[d;|.

Copyright © Weld 2002-2007

Retrieval Using Inverted Files
initialize all sim(qg, d;) =0
for each term t;in g
find I(t) using the hash table
for each (d;, wy) in I(t)
sim(q, d;) += q; *w;
for each (relevant) document d,
sim(q, d;) = sim(q, d;) * nf[i]
sort documents in descending similarities
and display the top k to the user;

Copyright © Weld 2002-2007

Observations about Method 2
e If doc d doesn’t contain any term of query q,

then d won't be considered when evaluating q.

e Only non-zero entries in the columns of the
document-term matrix which correspond to query
terms ... are used to evaluate the query.

» Computes the similarities of multiple documents
simultaneously (w.r.t. each query word)

Copyright © Weld 2002-2007 31

Efficient Retrieval

Example (Method 2): Suppose

q={(t1, 1), (t3,1) }, g/ =0.7071
d1={(t, 2), (2, 1), (t3, 1) }, nf1] = 0.4082
d2={(t2,2), (t3, 1), (t4, 1) }, nf[2] = 0.4082
d3={(t1, 1), (t3, 1), (t4, 1) }, nf[3] = 05774
dd={(t1,2), (t2, 1), (13, 2), (t4, 2) }, nf[4] = 0.2774
d5={ (12, 2), (t4, 1), (15, 2) }, nf[5] = 0.3333
I(t1) = { (d1, 2), (d3, 1), (d4,2) }
I(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5,2) }
I(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4,2) }
I(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5, 1) }
I(t5) = { (d5, 2) }

Copyright © Weld 2002-2007 32

9={{1). 3.3, Ul =07011 Efficient Retrieval
dl={(t1,2), (2. 1), (83, 1) }, nf[1] = 0.4082

d2={ (2. 2), (3. 1), (t4. 1) }. nf[2] = 0.4082

d3={(tL, 1), (3. 1), (t4, 1) }. nf[3] = 05774

d4={(t1, 2), (t2, 1), (13, 2), (t4, 2) }, nf[4] = 0.2774

d5={ (€2, 2), (t4. 1), (t5, 2) }, nf[5] = 0.3333

I(t1) = { (d1, 2), (d3, 1), (d4, 2) } After t1 is processed:

1(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5,2) } sim(q, d1) =2, sim(q, d2) =0,
1(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4, 2) } sim(q, d3) = 1

I(t4) ={ (d2, 1), (d3, 1), (d4, 1), (5, 1) } sim(g, d4) =2, sim(q, d5) =0

I(t5) ={(d5,2) } After t3 is processed:
sim(gq,d1) =3, sim(q,d2)=1,
sim(q, d3) = 2

sim(qg, d4) =4, sim(g, d5) =0
After normalization:

sim(qg, d1) = .87, sim(q, d2) = .29,

sim(q, d3) = .82
sim(q, d4) = .78, sim(q, d5) =0

Copyright © Weld 2002-2007 33

Efficiency versus Flexibility

e Storing computed document weights is good
for efficiency, but bad for flexibility.
— Recomputation needed if TF and IDF formulas
change and/or TF and DF information changes.
e Flexibility improved by storing raw TF, DF
information, but efficiency suffers.
e Acompromise
— Store pre-computed TF weights of documents.

— Use IDF weights with query term TF weights
instead of document term TF weights.

Copyright © Weld 2002-2007 34

How Inverted Files are Created

Crawler £ g L & Scan 2 Forward
Repository Index
ptrs

docs

Inverted S Sorted
can
File « | Index
List
Copyright © Weld 2002-2007 35

Creating Inverted Files

f-*

Repository

« File containing all documents downloaded

« Each doc has unique ID

« Ptr file maps from IDs to start of doc in repository

Copyright © Weld 2002-2007 36

Creating Inverted Files

NF ~ Length of each document

o
17

Forward Index o _Jouc

did
enact
julius
caesar

SNSRI PN
~NouawNE T

was

Copyright © Weld 2002-2007

to
docs,

=

Creating Inverted Files m

1 e
julius 1 brutus
; 1
S
; L o
Sorted Index g 1
s 10
(positional info as well)
Copyright © Weld 2002-2007 38

Creating Inverted Files

repsiony) - [
v

to
docs,

v

‘\ v
@ =)

Lexicon Construction

 Build Trie (or hash table)

1 6 911 1719 24 28 33 40 4650 55 60
Thisis a text. A text has many words. Words are made from letters.

| Ales®] e]

O—r *—O
n
t
128
S

words: 33, 40

Copyright © Weld 2002-2007 40

LeXiCOn DOCID OCCUR POS1 POS2
WORD NDOCS| PTR ‘ ‘ ‘ ‘ | ‘ ‘ ‘ ‘
Z 11— 34 6 1 118 2087 | 3922| 3981| 5002
Jezebel 2 44 3] 215| 2291 3010]
jezer 3 }_56\ 4] 5| 22| 134] 992]
jezerit 1
jeziah 1 [566] 3] 203] 245] 287]
eziel 1 . -
feaiar : Inverted File List
jezoar 1 .
jezrahliah 1
jezreel 39 —
Copyright © Weld 2002-2007 39
Memory Too Small?
1-4
34
L 2 J [s][4]
* Merging
— When word is shared in two lexicons
— Concatenate occurrence lists
- O(nl +n2)
» Overall complexity
— O(n log(n/M)
Copyright © Weld 2002-2007 41

Stop lists

» Language-based stop list:

— words that bear little meaning
— 20-500 words

— http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

 Subject-dependent stop lists
* Removing stop words

— From document
— From query

From Peter Brusilovsky Univ Pittsburg INFSCI 2140

Copyright © Weld 2002-2007 42

Stemming

¢ Are there different index terms?
— retrieve, retrieving, retrieval, retrieved, retrieves...
e Stemming algorithm:

— (retrieve, retrieving, retrieval, retrieved, retrieves) =
retriev

— Strips prefixes of suffixes (-s, -ed, -ly, -ness)
— Morphological stemming

Stemming Continued

Can reduce vocabulary by ~ 1/3

C, Java, Perl versions, python, c#
www.tartarus.org/~martin/PorterStemmer

Criterion for removing a suffix

— Does "a document is about w," mean the same as
— a "a document about w,"

Problems: sand / sander & wand / wander

Commercial SEs use giant in-memory tables

Copyright © Weld 2002-2007 44

Copyright © Weld 2002-2007 43
Compression
¢ What Should We Compress?
— Repository
— Lexicon
— Inv Index

* What properties do we want?
— Compression ratio
— Compression speed
— Decompression speed
— Memory requirements
— Pattern matching on compressed text
— Random access

Copyright © Weld 2002-2007 45

Inverted File Compression

Each inverted list has the form <f,; d,, d,, d,, ..., df‘ >

A naive representation results in a storage overhead of (f + n) * [logN
This can also be stored as < f,;d,d,—d,,...,d, —d, , >

Each difference is called a d-gap. Since Z(d —gaps)<N,

each pointer requires fewer than [logN] bits.

Trick is encoding since worst case

q Assume d-gap representation for the rest of the talk, unless stated

otherwise

Slides adapted from Tapas Kanungo and David Mount, Univ Maryland
Copyright © Weld 2002-2007

Text Compression

Two classes of text compression methods
» Symbolwise (or statistical) methods

— Estimate probabilities of symbols - modeling step

— Code one symbol at a time - coding step

— Use shorter code for the most likely symbol

— Usually based on either arithmetic or Huffman coding
« Dictionary methods

— Replace fragments of text with a single code word

— Typically an index to an entry in the dictionary.

« eg: Ziv-Lempel coding: replaces strings of characters with a pointer to
a previous occurrence of the string.

— No probability estimates needed
m) Symbolwise methods are more suited for coding d-gaps

Copyright © Weld 2002-2007 47

Classifying d-gap Compression Methods:

Global: each list compressed using same model

— non-parameterized: probability distribution for d-gap sizes is
predetermined.

— parameterized: probability distribution is adjusted according to
certain parameters of the collection.

Local: model is adjusted according to some parameter,
like the frequency of the term

By definition, local methods are parameterized.

Copyright © Weld 2002-2007 48

Conclusion
Local methods best

Parameterized global models ~ non-parameterized

— Pointers not scattered randomly in file

In practice, best index compression algorithm is:

— Local Bernoulli method (using Golomb coding)
Compressed inverted indices usually faster+smaller than
— Signature files

— Bitmaps

Local < Parameterized Global < Non-parameterized Global

\ Not by much

Copyright © Weld 2002-2007 49

