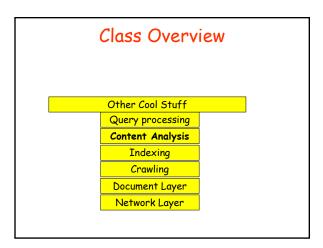


Administrivia

- PS1 due next tues 10/13
 Project proposals also due then
- Group meetings with Dan Signup out shortly



Today's Outline

- Brief supervised learning review
- Evaluation
- Overfitting
- Ensembles
 - Learners: The more the merrier
 - Co-Training (Semi) Supervised learning with few labeled training ex

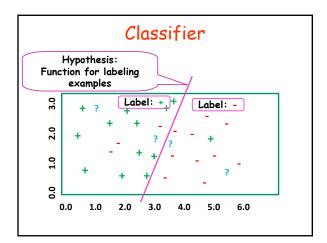
Types of Learning

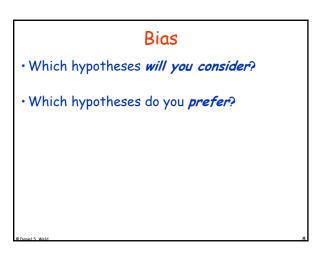
- Supervised (inductive) learning Training data includes desired outputs
- Semi-supervised learning Training data includes a *few* desired outputs
- Unsupervised learning Training data *doesn't* include desired outputs
- Reinforcement learning
 Rewards from sequence of actions

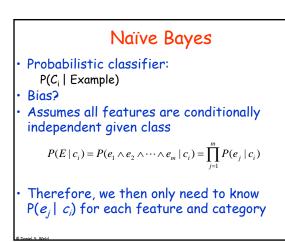
Supervised Learning

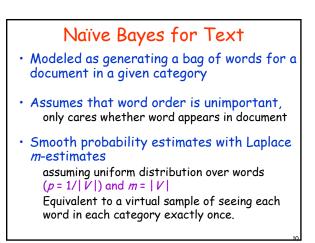
Inductive learning or "**Prediction**": Given examples of a function (X, F(X))**Predict** function F(X) for new examples X

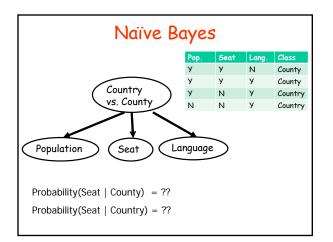
- Classification
 F(X) = Discrete
- Regression
- F(X) = Continuous
- Probability estimation
 F(X) = Probability(X):

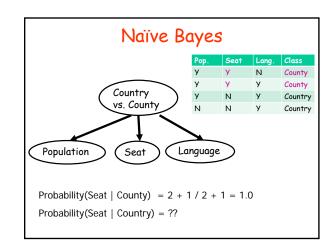


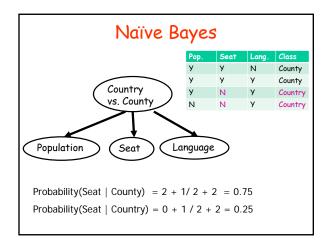


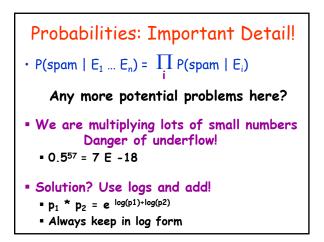


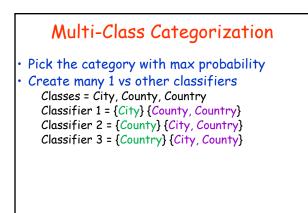


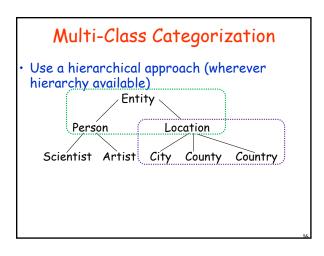












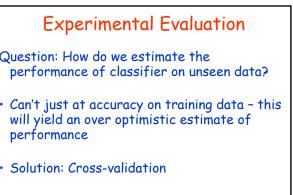
Today's Outline

- Brief supervised learning review
- Evaluation
- Overfitting
- Ensembles

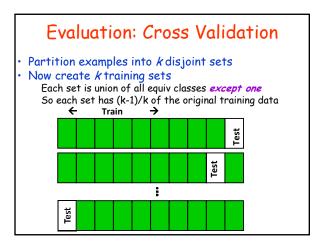
Learners: The more the merrier

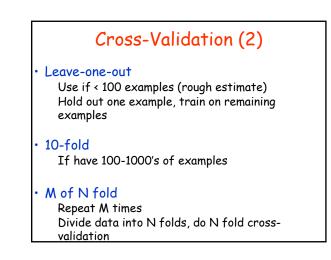
Co-Training

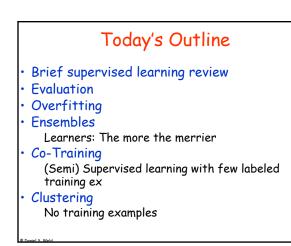
(Semi) Supervised learning with few labeled training ex

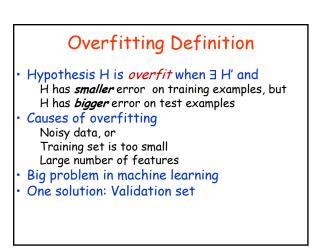


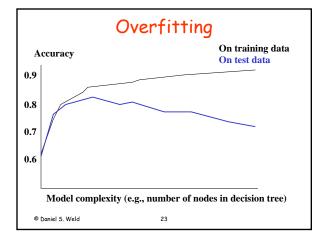
 Note: this is sometimes called estimating how well the classifier will generalize

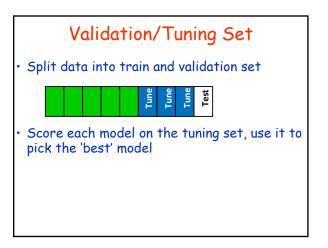


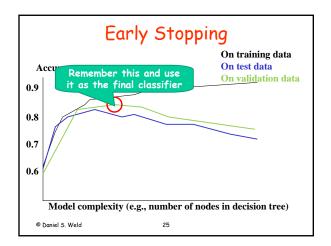


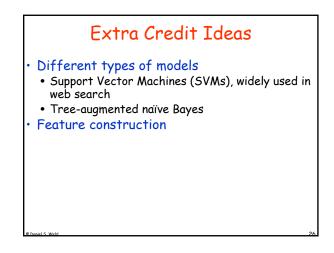


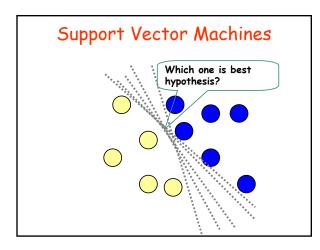


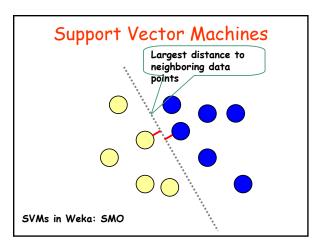


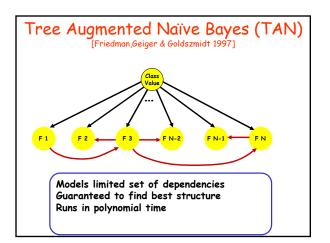


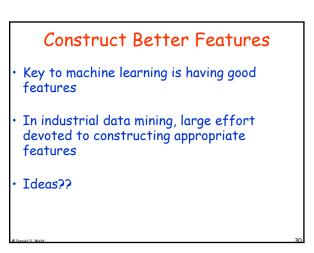


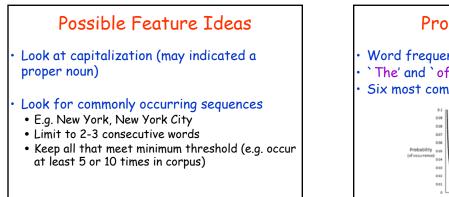




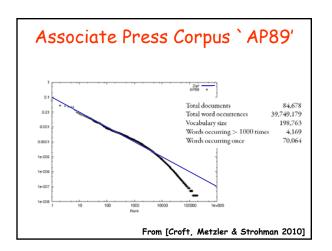








Properties of Text • Word frequencies - skewed distribution • The' and `of' account for 10% of all words • Six most common words account for 40% $\frac{\text{Zipf's Law:}}{\text{Rank * probability = c}}_{\text{Eg, c = 0.1}}$ From [Croft, Metzler & Strohman 2010]





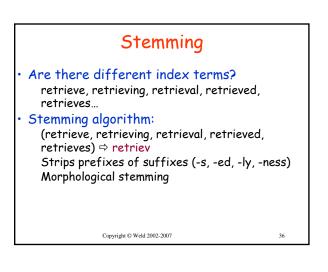
Stop lists

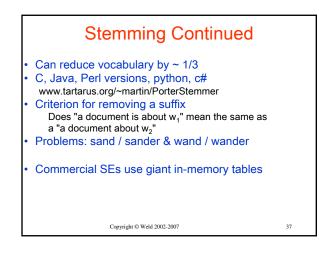
Language-based stop list:

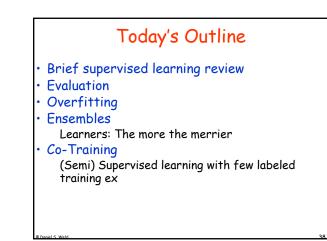
words that bear little meaning 20-500 words http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words Subject-dependent stop lists

From Peter Brusilovsky Univ Pittsburg INFSCI 2140

35

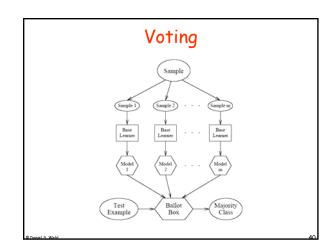


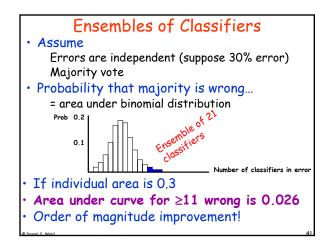


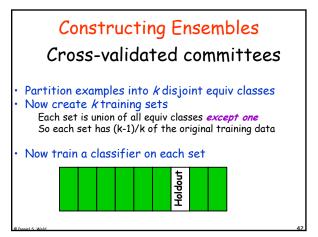


Ensembles of Classifiers

- Traditional approach: Use one classifier
- Alternative approach: Use lots of classifiers
- Approaches:
 - Cross-validated committees
 - Bagging
 - Boosting
 - Stacking

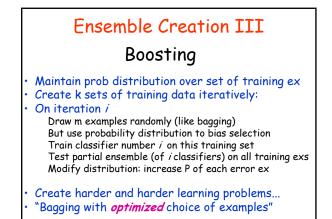


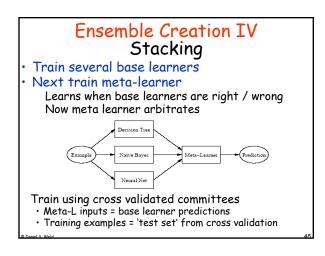


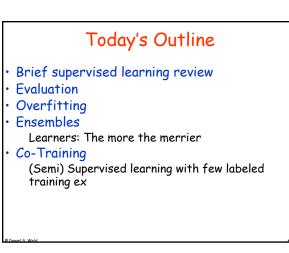


Ensemble Construction II Bagging

- Generate k sets of training examples
- For each set
 - Draw m examples randomly (with replacement) From the original set of m examples
- Each training set corresponds to 63.2% of original (+ duplicates)
- Now train classifier on each set
- Intuition: Sampling helps algorithm become more robust to noise/outliers in the data







Co-Training Motivation

- Learning methods need labeled data
 Lots of <x, f(x)> pairs
 Hard to get... (who wants to label data?)
- But unlabeled data is usually plentiful... Could we use this instead??????
- Semi-supervised learning

Suppose Co-training

- · Have little labeled data + lots of unlabeled
- Each instance has two parts:
 x = [x1, x2]
 x1, x2 conditionally independent given f(x)
- Each half can be used to classify instance ∃f1, f2 such that f1(x1) ~ f2(x2) ~ f(x)
- Both f1, f2 are learnable
 f1 ∈ H1, f2 ∈ H2, ∃ learning algorithms A1, A2

