Text Categorization

CSE 454

Administrivia

- Mailing List
- Groups for PS1
- Questions on PS1?
 - Due 10/13 before class
- Groups for Project
- · Ideas for Project

Class Overview

Other Cool Stuff

Query processing

Content Analysis

Indexing

Crawling

Document Layer

Network Layer

Class Overview

Other Cool Stuff

Content Analysis

Document Layer

Network Layer

Categorization

- Given:
 - A description of an instance, $x \in X$, where X is the instance language or instance space.
 - A fixed set of categories:

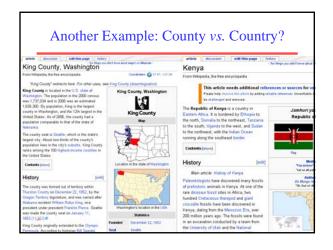
 $C = \{c_1, c_2, ... c_n\}$

- Determine:
 - The **category of** x: $c(x) \in C$, where c(x) is a categorization function whose domain is X and whose range is *C*.

Sample Category Learning Problem

- Instance language: <size, color, shape>
 - size \in {small, medium, large}
 - color \in {red, blue, green}
 - shape ∈ {square, circle, triangle}
- $C = \{ positive, negative \}$
- D:

Example	Size	Color	Shape	Category
1	small	red	circle	positive
2	large	red	circle	positive
3	small	red	triangle	negative
4	large	blue	circle	negative



Example: County vs. Country?

- Given:
 - A description of an instance, x∈X, where X is the *instance language* or *instance space*.
 - A fixed set of categories: $C = \{c_1, c_2,...c_n\}$

• Determine:

- The category of x: $c(x) \in C$, where c(x) is a categorization function whose domain is X and whose range is C.

Many Control of Contro

Text Categorization

- Assigning documents to a fixed set of categories, e.g.
- Web pages
- Yahoo-like classification
- · What else?
- · Email messages
 - Spam filteringPrioritizing
 - Folderizing
- News articles
 - Personalized newspaper
- Web Ranking
 - Is page related to selling something?

Procedural Classification

- Approach:
 - Write a procedure to determine a document's class
 - E.g., Spam?

Learning for Text Categorization

- Hard to construct text categorization functions.
- Learning Algorithms:
 - Bayesian (naïve)
 - Neural network
 - Relevance Feedback (Rocchio)
 - Rule based (C4.5, Ripper, Slipper)
 - Nearest Neighbor (case based)
 - Support Vector Machines (SVM)

Applications of ML

- · Credit card fraud
- Product placement / consumer behavior
- Recommender systems
- · Speech recognition

Most mature & successful area of AI

© Daniel S. Wel

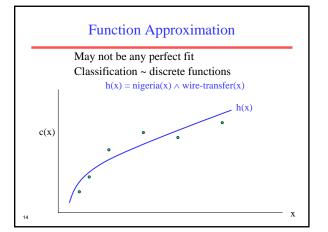
Learning for Categorization

- A *training example* is an instance $x \in X$, paired with its correct category c(x): $\langle x, c(x) \rangle$ for an unknown categorization function, c.
- Given a set of training examples, D.

• Find a hypothesized categorization function, h(x), such that: $\forall < x, c(x) > \in D : h(x) = c(x)$

Consistency

13



General Learning Issues

- · Many hypotheses consistent with the training data.
- Rioc
 - Any criteria other than consistency with the training data that is used to select a hypothesis.
- · Classification accuracy
 - % of instances classified correctly
 - (Measured on independent test data.)
- Training time
 - Efficiency of training algorithm
- Testing time
 - Efficiency of subsequent classification

Generalization

- Hypotheses must *generalize* to correctly classify instances not in the training data.
- Simply memorizing training examples is a consistent hypothesis *that does not generalize*.

16

Why is Learning Possible?

Experience alone never justifies any conclusion about any unseen instance.

Learning occurs when PREJUDICE meets DATA!

Learning a "Frobnitz"

O Daniel C Wel

Bias

- The nice word for prejudice is "bias".
- What kind of hypotheses will you *consider*?
 - What is allowable *range* of functions you use when approximating?
- What kind of hypotheses do you prefer?

© Daniel S. Weld

Some Typical Biases

- -Occam's razor
 - "It is needless to do more when less will suffice"
 - William of Occam,

died 1349 of the Black plague

- -MDL Minimum description length
- -Concepts can be approximated by
- ... **conjunctions** of predicates
 - ... by linear functions
 - ... by short decision trees

O Daniel S. We

Hypothesis Spaces

 Complete Ignorance. There are 2¹⁶ = 65536 possible boolean functions over four input features. We can't figure out which one is correct until we've seen every possible input-output pair. After 7 examples, we still have 2⁶ possibilities.

Terminology

- \bullet Target function (target concept). The true function f.
- Hypothesis. A proposed function h believed to be similar to f.
- Concept. A boolean function. Examples for which f(x) = 1 are called positive examples or positive instances of the concept. Examples for which f(x) = 0 are called negative examples or negative instances.
- Classifier. A discrete-valued function. The possible values $f(\mathbf{x}) \in \{1, \dots, K\}$ are called the classes or class labels.
- Hypothesis Space. The space of all hypotheses that can, in principle, be output by a learning algorithm.
- Version Space. The space of all hypotheses in the hypothesis space that have not yet been ruled out by a training example.

Two Strategies for ML

- Restriction bias: use prior knowledge to specify a restricted hypothesis space.
 - -Naïve Bayes Classifier
- Preference bias: use a broad hypothesis space, but impose an ordering on the hypotheses.
 - -Decision trees.

Bayesian Methods

- Learning and classification methods based on probability theory.
 - Bayes theorem plays a critical role in probabilistic learning and classification.
 - Uses *prior* probability of each category given no information about an item.
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.

siel S. Weld

23

Axioms of Probability Theory

- All probabilities between 0 and 1 $0 \le P(A) \le 1$
- Probability of truth and falsity P(true) = 1 P(false) = 0.
- The probability of disjunction is: $P(A \lor B) = P(A) + P(B) P(A \land B)$

25

Probability: Simple & Logical

 The definitions imply that certain logically related events must have related probabilities

E.g.
$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

26

Conditional Probability

- $P(A \mid B)$ is the probability of A given B
- Assumes:
 - -B is all and only information known.
- Defined by:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

27

Independence

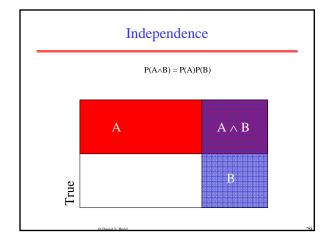
• *A* and *B* are *independent* iff:

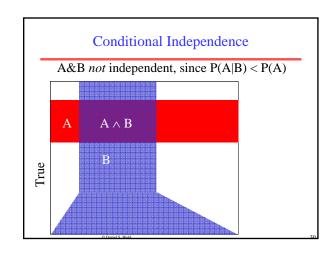
$$P(A | B) = P(A)$$
 These constraints are logically equivalent $P(B | A) = P(B)$

• Therefore, if *A* and *B* are independent:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = P(A)$$

$$P(A \wedge B) = P(A)P(B)$$





Conditional Independence But: A&B are *made* independent by $\neg C$ $P(A|B,\neg C)$ $A \wedge C$ $A \wedge B$ $= P(A|\neg C)$ В True C

Bayes Theorem

 $P(H \mid E) = \frac{P(E \mid H)P(H)}{P(H)}$

Simple proof from definition of conditional probability:

$$P(H \mid E) = \frac{P(H \land E)}{P(E)}$$
 (Def. cond. prob.)

$$P(F \mid H) = \frac{P(H \land E)}{P(H \land E)}$$
 (Def. cond. prob.)

$$P(H \wedge E) = P(E \mid H)P(H)$$
 (Mult both sides of 2 by P(H).)

QED:
$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$
 (Substitute 3 in 1.)

Bayesian Categorization

- Let set of categories be $\{c_1, c_2, ... c_n\}$
- Let E be description of an instance.
- Determine category of E by determining for each c_i

$$P(c_i \mid E) = \frac{P(c_i)P(E \mid c_i)}{P(E)}$$

• P(E) can be ignored since is factor \forall categories

$$P(c_i | E) \sim P(c_i)P(E | c_i)$$

Bayesian Categorization

- Let set of categories be $\{c_1, c_2, ... c_n\}$
- Let E be description of an instance.
- Determine category of E by determining for each c_i $P(c_i \mid E) = \frac{P(c_i)P(E \mid c_i)}{P(c_i \mid E)}$
- P(E) can be determined since categories are complete and disjoint.

$$\sum_{i=1}^{n} P(c_i \mid E) = \sum_{i=1}^{n} \frac{P(c_i)P(E \mid c_i)}{P(E)} = 1$$

$$P(E) = \sum_{i=1}^{n} P(c_i) P(E \mid c_i)$$

Bayesian Categorization

 $P(c_i | E) \sim P(c_i)P(E | c_i)$

- Need to know:
 - Priors: $P(c_i)$
 - Conditionals $(P(E \mid c_i))$

- $P(c_i)$ are easily estimated from data.
 - If n_i of the examples in D are in c_i , then $P(c_i) = n_i / |D|$
- Assume instance is a conjunction of binary features: $E = e_1 \wedge e_2 \wedge \cdots \wedge e_m$
- Too many possible instances (exponential in m) to estimate all $P(E \mid c_i)$

Naïve Bayesian Motivation

- Problem: Too many possible instances (exponential in m) to estimate all $P(E \mid c_i)$
- If we assume features of an instance are independent given the category (c_i) (conditionally independent). $P(E \mid c_i) = P(e_1 \land e_2 \land \cdots \land e_m \mid c_i) = \prod_{i=1}^{n} P(e_i \mid c_i)$

$$P(E \mid c_i) = P(e_1 \land e_2 \land \dots \land e_m \mid c_i) = \prod_{j=1}^{n} P(e_j \mid c_i)$$

Therefore, we then only need to know $P(e_i | c_i)$ for each feature and category.

Naïve Bayes Example

- C = {allergy, cold, well}
- e_1 = sneeze; e_2 = cough; e_3 = fever
- $E = \{\text{sneeze, cough, } \neg \text{fever}\}$

Prob	Well	Cold	Allergy
$P(c_i)$	0.9	0.05	0.05
$P(\text{sneeze} c_i)$	0.1	0.9	0.9
$P(\text{cough} c_i)$	0.1	0.8	0.7
P(fever c.)	0.01	0.7	0.4

Naïve Bayes Example (cont.)

Probability	Well	Cold	Allergy
$P(c_i)$	0.9	0.05	0.05
P(sneeze $ c_i $	0.1	0.9	0.9
$P(\text{cough} \mid c_i)$	0.1	0.8	0.7
P(fever c.)	0.01	0.7	0.4

 $E=\{sneeze, cough, \neg fever\}$

 $P(well \mid E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)$ $P(\text{cold} \mid E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)$ $P(allergy \mid E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)$

Most probable category: allergy P(E) = 0.089 + 0.01 + 0.019 = 0.0379

P(well | E) = 0.23P(cold | E) = 0.26 $P(allergy \mid E) = 0.50$

Estimating Probabilities

- Normally, probabilities are estimated based on observed frequencies in the training data.
- If D contains n_i examples in category c_i , and n_{ij} of these n_i examples contains feature e_j , then: $P(e_j \mid c_i) = \frac{n_{ij}}{n_i}$

$$P(e_j \mid c_i) = \frac{n_{ij}}{n_i}$$

- However, estimating such probabilities from small training sets is error-prone.
- If due only to chance, a rare feature, e_k , is always false in the training data, $\forall c_i : P(e_k \mid c_i) = 0$.
- If e_k then occurs in a test example, E, the result is that $\forall c_i$: $P(E \mid c_i) = 0$ and $\forall c_i$: $P(c_i \mid E) = 0$

Smoothing

- · To account for estimation from small samples, probability estimates are adjusted or smoothed.
- Laplace smoothing using an *m*-estimate assumes that each feature is given a prior probability, p, that is assumed to have been previously observed in a "virtual" sample of size m.

$$P(e_j | c_i) = \frac{n_{ij} + mp}{n_i + m} = (n_{ij} + 1) / (n_i + 2)$$

• For binary features, p is simply assumed to be 0.5.

Naïve Bayes for Text

- Modeled as generating a bag of words for a document in a given category by repeatedly sampling with replacement from a vocabulary $V = \{w_1, w_2, ... w_m\}$ based on the probabilities $P(w_i | c_i)$.
- Smooth probability estimates with Laplace m-estimates assuming a uniform distribution over all words (p = 1/|V|) and m = |V|
 - Equivalent to a virtual sample of seeing each word in each category exactly once.

Text Naïve Bayes Algorithm (Train)

Let V be the vocabulary of all words in the documents in D For each category $c_i \in C$

Let D_i be the subset of documents in D in category c_i $P(c_i) = |D_i| / |D|$

Let T_i be the concatenation of all the documents in D_i Let n_i be the total number of word occurrences in T_i For each word $w_i \in V$

Let n_{ii} be the number of occurrences of w_i in T_i Let $P(w_i | c_i) = (n_{ii} + 1) / (n_i + |V|)$

Text Naïve Bayes Algorithm (Test)

Given a test document XLet n be the number of word occurrences in XReturn the category:

$$\underset{c_i \in C}{\operatorname{argmax}} P(c_i) \prod_{i=1}^{n} P(a_i \mid c_i)$$

where a_i is the word occurring the *i*th position in X

43

Naïve Bayes Time Complexity

- Training Time: $O(|D|L_d + |C||V|))$ where L_d is the average length of a document in D.
 - Assumes V and all D_i , n_i , and n_{ij} pre-computed in $O(|D|L_d)$ time during one pass through all of the data.
 - Generally just $O(|D|L_d)$ since usually $|C||V| < |D|L_d$
- Test Time: $O(/C/L_t)$ where L_t is the average length of a test document.
- Very efficient overall, linearly proportional to the time needed to just read in all the data.

44

Easy to Implement

- But...
- If you do... it probably won't work...

45

Probabilities: Important Detail!

- $P(\text{spam} \mid E_1 \dots E_n) = \prod_i P(\text{spam} \mid E_i)$ Any more potential problems here?
- We are multiplying lots of small numbers Danger of underflow!
 - $0.5^{57} = 7 E 18$
- Solution? Use logs and add!
 - $p_1 * p_2 = e^{\log(p_1) + \log(p_2)}$
 - Always keep in log form

Underflow Prevention

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes
 - I.e. the class with maximum posterior probability...
 - Usually fairly accurate (?!?!?)
- However, due to the inadequacy of the conditional independence assumption...
 - Actual posterior-*probability* estimates *not* accurate.
 - Output probabilities generally very close to 0 or 1.

Multi-Class Categorization

- Pick the category with max probability
- Create many 1 vs other classifiers
- Use a hierarchical approach (wherever hierarchy available)

