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ABSTRACT 

The web provides an unprecedented opportunity to evaluate ideas 
quickly using controlled experiments, also called randomized 
experiments (single-factor or factorial designs), A/B tests (and 
their generalizations), split tests, Control/Treatment tests, and 
parallel flights.  Controlled experiments embody the best 
scientific design for establishing a causal relationship between 
changes and their influence on user-observable behavior.  We 
provide a practical guide to conducting online experiments, where 

end-users can help guide the development of features.  Our 
experience indicates that significant learning and return-on-
investment (ROI) are seen when development teams listen to their 
customers, not to the Highest Paid Person’s Opinion (HiPPO). We 
provide several examples of controlled experiments with 
surprising results.  We review the important ingredients of 
running controlled experiments, and discuss their limitations (both 
technical and organizational).  We focus on several areas that are 
critical to experimentation, including statistical power, sample 

size, and techniques for variance reduction.   We describe 
common architectures for experimentation systems and analyze 
their advantages and disadvantages.  We evaluate randomization 
and hashing techniques, which we show are not as simple in 
practice as is often assumed.  Controlled experiments typically 
generate large amounts of data, which can be analyzed using data 
mining techniques to gain deeper understanding of the factors 
influencing the outcome of interest, leading to new hypotheses 

and creating a virtuous cycle of improvements.  Organizations that 
embrace controlled experiments with clear evaluation criteria can 
evolve their systems with automated optimizations and real-time 
analyses.  Based on our extensive practical experience with 
multiple systems and organizations, we share key lessons that will 
help practitioners in running trustworthy controlled experiments. 

Categories and Subject Descriptors 

G.3 Probability and Statistics/Experimental Design: controlled 

experiments, randomized experiments, A/B testing. 

I.2.6 Learning: real-time, automation, causality. 

General Terms 
Management, Measurement, Design, Experimentation, Human Factors. 
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1. INTRODUCTION 
One accurate measurement is worth more 

 than a thousand expert opinions 
 — Admiral Grace Hopper 

In the 1700s, a British ship’s captain observed the lack of scurvy 
among sailors serving on the naval ships of Mediterranean 
countries, where citrus fruit was part of their rations.  He then 
gave half his crew limes (the Treatment group) while the other 

half (the Control group) continued with their regular diet.  Despite 
much grumbling among the crew in the Treatment group, the 
experiment was a success, showing that consuming limes 
prevented scurvy.   While the captain did not realize that scurvy is 
a consequence of vitamin C deficiency, and that limes are rich in 
vitamin C, the intervention worked.  British sailors eventually 
were compelled to consume citrus fruit regularly, a practice that 
gave rise to the still-popular label limeys (1). 

Some 300 years later, Greg Linden at Amazon created a prototype 
to show personalized recommendations based on items in the 
shopping cart (2).  You add an item, recommendations show up; 

add another item, different recommendations show up.   Linden 
notes that while the prototype looked promising, ―a marketing 
senior vice-president was dead set against it,‖ claiming it will 
distract people from checking out. Greg was ―forbidden to work 
on this any further.‖  Nonetheless, Greg ran a controlled 
experiment, and the ―feature won by such a wide margin that not 
having it live was costing Amazon a noticeable chunk of change. 
With new urgency, shopping cart recommendations launched.‖  
Since then, multiple sites have copied cart recommendations. 

The authors of this paper were involved in many experiments at 
Amazon, Microsoft, Dupont, and NASA.  The culture of 

experimentation at Amazon, where data trumps intuition (3), and 
a system that made running experiments easy, allowed Amazon to 
innovate quickly and effectively.  At Microsoft, there are multiple 
systems for running controlled experiments. We describe several 
architectures in this paper with their advantages and 
disadvantages.   A unifying theme is that controlled experiments 
have great return-on-investment (ROI) and that building the 
appropriate infrastructure can accelerate innovation. Stefan 

Thomke’s book title is well suited here: Experimentation 
Matters (4). 

The web provides an unprecedented opportunity to evaluate ideas 

quickly using controlled experiments, also called randomized 
experiments (single-factor or factorial designs), A/B tests (and 
their generalizations), split tests, Control/Treatment, and parallel 
flights.  In the simplest manifestation of such experiments, live 
users are randomly assigned to one of two variants: (i) the 
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Control, which is commonly the ―existing‖ version, and (ii) the 
Treatment, which is usually a new version being evaluated.   
Metrics of interest, ranging from runtime performance to implicit 
and explicit user behaviors and survey data, are collected.  
Statistical tests are then conducted on the collected data to 

evaluate whether there is a statistically significant difference 
between the two variants on metrics of interest, thus permitting us 
to retain or reject the (null) hypothesis that there is no difference 
between the versions.   In many cases, drilling down to segments 
of users using manual (e.g., OLAP) or machine learning and data 
mining techniques, allows us to understand which subpopulations 
show significant differences, thus helping improve our 
understanding and progress forward with an idea.  

Controlled experiments provide a methodology to reliably 
evaluate ideas. Unlike other methodologies, such as post-hoc 
analysis or interrupted time series (quasi experimentation) (5), this 

experimental design methodology tests for causal relationships (6 
pp. 5-6).  Most organizations have many ideas, but the return-on-
investment (ROI) for many may be unclear and the evaluation 
itself may be expensive.   As shown in the next section, even 
minor changes can make a big difference, and often in unexpected 
ways.  A live experiment goes a long way in providing guidance 
as to the value of the idea.  Our contributions include the 
following. 

 In Section 3 we review controlled experiments in a web 

environment and provide a rich set of references, including an 
important review of statistical power and sample size, which 
are often missing in primers.  We then look at techniques for 
reducing variance that we found useful in practice.  We also 

discuss extensions and limitations so that practitioners can 
avoid pitfalls. 

 In Section 4 we present generalized architectures that unify 

multiple experimentation systems we have seen, and we discuss 
their pros and cons.  We show that some randomization and 
hashing schemes fail conditional independence tests required 
for statistical validity.   

 In Section 5 we provide important practical lessons. 

When a company builds a system for experimentation, the cost of 
testing and experimental failure becomes small, thus encouraging 

innovation through experimentation.   Failing fast and knowing 
that an idea is not as great as was previously thought helps 
provide necessary course adjustments so that other more 
successful ideas can be proposed and implemented.    

2. MOTIVATING EXAMPLES 
The fewer the facts, the stronger the opinion 

— Arnold Glasow  

The following two examples show how small differences in UI 
can result in significant differences to the metric of interest. 

2.1 Checkout Page at Doctor FootCare 
The conversion rate of an e-commerce site is the percentage of 
visits to the website that include a purchase. The following 
example comes from Bryan Eisenberg’s articles (7; 8). 

There are nine differences between the two variants of the Doctor 
FootCare checkout page shown in Figure 1.  If a designer showed 
you these and asked which one should be deployed, could you tell 
which one results in a higher conversion rate?  Could you estimate 
what the difference is between the conversion rates and whether 
that difference is significant? 

We will share the results at the end of the section, but we 
encourage the readers to think about it before reading the answer. 

2.2 Ratings of Microsoft Office Help Articles 
Users of Microsoft Office who request help from Office or 
through the website are given an opportunity to rate the article.  
The initial implementation presented users with a Yes/No widget.  
The team then modified the widget and offered a 5-star ratings. 

The motivations for the change were the following: 

1. The 5-star widget provides finer-grained feedback, which 
might help better evaluate content writers. 

2. The 5-star widget improves usability by exposing users to a 
single feedback box as opposed to two separate pop-ups (one 
for Yes/No and another for Why). 

 

We encourage you, the reader, to think about whether the new 
model can meet the stated goals. 

 

  
Figure 1: Variant A on left, Variant B on right.   

Can you guess which one has a higher conversion rate and whether the difference is significant? 
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2.3 Results and ROI 
For the Doctor FootCare checkout page, variant A in Figure 1 
outperformed variant B by an order of magnitude.  In reality, the 
site ―upgraded‖ from the A to B and lost 90% of their revenue.  
Most of the changes in the upgrade were positive, but the coupon 
code was the critical one: people started to think twice about 
whether they were paying too much because there are discount 

coupons out there that they do not have.  By removing the 
discount code from the new version (B), conversion-rate increased 
6.5% relative to the old version (A). 

For Microsoft’s Office Help articles, the number of ratings 
plummeted by an order of magnitude, thus significantly missing 
on goal #2 above.  Based on additional tests, it turned out that the 
two-stage model actually helps in increasing the response rate.   
Even goal #1 was somewhat of a disappointment as most people 
chose the extremes (one or five stars).  When faced with a 
problem for which you need help, the article either helps you 
solve the problem or it does not! 

While these are extreme examples that are surprising in the 
magnitude of the difference, they show how hard it is to predict 
the success of new designs.  Both of these are user-interface 

examples, but controlled experiments can be used heavily in back-
end algorithms (e.g., recommendations, search relevance, etc). 

Great examples of experiments are available at Marketing 

Experiments journal (9), Design Choices Can Cripple a Website 
(10), Call to Action (11), and Which Sells Best (12).  Forrester’s 
Primer on A/B Testing (13) mentions a few good examples of 
positive ROI.  In shop.com’s The State of Retailing (14), the 
authors wrote that in their survey of 137 US retailers ―100% of the 
retailers that employed usability testing and A/B testing of offers 
and promotions rank these tactics as effective or very effective.‖ 

3. CONTROLLED EXPERIMENTS 
Enlightened trial and error outperforms 

 the planning of flawless execution 
— David Kelly, founder of Ideo 

In the simplest controlled experiment, often referred to as an A/B 
test, users are randomly exposed to one of two variants: control 
(A), or treatment (B) as shown in Figure 2 (15; 16; 6). 

The key here is ―random.‖  Users cannot be distributed ―any old 
which way‖ (17); no factor can influence the decision.  Based on 

observations collected, an Overall Evaluation Criterion (OEC) is 
derived for each variant (18).  

For example, in Checkout Example (Section 2.1), the OEC can be 
the conversion rate, units purchased, revenue, profit, expected 
lifetime value, or some weighted combination of these.  Analysis 
is then done to determine if the difference in the OEC for the 
variants is statistically significant. 

If the experiment was designed and executed properly, the only 

thing consistently different between the two variants is the change 
between the Control and Treatment, so any differences in the 
OEC are inevitably the result of this assignment, establishing 
causality (17 p. 215). 

There are several primers on running controlled experiments on 
the web (19 pp. 76-78; 11 pp. 283-286; 13; 20; 21; 22; 23; 24),  
(25; 26 pp. 248-253; 27 pp. 213-219; 28 pp. 116-119). 

While the concept is easy to understand and basic ideas echo 
through many references, there are important lessons that we 
share here that are rarely discussed.  These will help 
experimenters understand the applicability, limitations, and how 
to avoid mistakes that invalidate the results. 

 
Figure 2 

3.1 Terminology 
The terminology for controlled experiments varies widely in the 

literature.  Below we define key terms used in this paper and note 
alternative terms that are commonly used. 

Overall Evaluation Criterion (OEC) (18). A quantitative 

measure of the experiment’s objective.  In statistics this is often 
called the Response or Dependent Variable (15; 16); other 
synonyms include Outcome, Evaluation metric, Performance 

metric, or Fitness Function (22).  Experiments may have 
multiple objectives and a scorecard approach might be taken (29), 
although selecting a single metric, possibly as a weighted 
combination of such objectives is highly desired and 
recommended (18 p. 50).  A single metric forces tradeoffs to be 

made once for multiple experiments and aligns the organization 
behind a clear objective.  A good OEC should not be short-term 
focused (e.g., clicks); to the contrary, it should include factors that 
predict long-term goals, such as predicted lifetime value and 
repeat visits. Ulwick describes some ways to measure what 
customers want (although not specifically for the web) (30). 

Factor.  A controllable experimental variable that is thought to 
influence the OEC.  Factors are assigned Values, sometimes 
called Levels or Versions.  Factors are sometimes called 
Variables.    In simple A/B tests, there is a single factor with two 
values: A and B. 

Variant.  A user experience being tested by assigning levels to 
the factors; it is either the Control or one of the Treatments.  
Sometimes referred to as Treatment, although we prefer to 

specifically differentiate between the Control, which is a special 
variant that designates the existing version being compared 
against and the new Treatments being tried.  In case of a bug, for 
example, the experiment is aborted and all users should see the 
Control variant. 

Experimentation Unit. The entity on which observations are 
made.  Sometimes called an item.  The units are assumed to be 
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independent. On the web, the user is the most common 
experimentation unit, although some experiments may be done on 
sessions or page views.   For the rest of the paper, we will assume 
that the experimentation unit is a user.  It is important that the user 
receive a consistent experience throughout the experiment, and 
this is commonly achieved through cookies.   

Null Hypothesis.  The hypothesis, often referred to as H0, that the 

OECs for the variants are not different and that any observed 
differences during the experiment are due to random fluctuations. 

Confidence level. The probability of failing to reject (i.e., 
retaining) the null hypothesis when it is true.   

Power. The probability of correctly rejecting the null hypothesis, 
H0, when it is false.  Power measures our ability to detect a 
difference when it indeed exists.   

A/A Test.   Sometimes called a Null Test (19).   Instead of an A/B 
test, you exercise the experimentation system, assigning users to 

one of two groups, but expose them to exactly the same 
experience.  An A/A test can be used to (i) collect data and assess 
its variability for power calculations, and (ii) test the 
experimentation system (the Null hypothesis should be rejected 
about 5% of the time when a 95% confidence level is used). 

Standard Deviation (Std-Dev).  A measure of variability, 
typically denoted by 𝜎.  

Standard Error (Std-Err).  For a statistic, it is the standard 
deviation of the sampling distribution of the sample statistic (15).  

For a mean of 𝑛 independent observations, it is 𝜎 / 𝑛 where 𝜎  is 
the estimated standard deviation. 

3.2 Hypothesis Testing and Sample Size 
To evaluate whether one of the treatments is different than the 
Control, a statistical test can be done.  We accept a Treatment as 
being statistically significantly different if the test rejects the null 
hypothesis, which is that the OECs are not different. 

We will not review the details of the statistical tests, as they are 
described very well in many statistical books (15; 16; 6). 

What is important is to review the factors that impact the test: 

1. Confidence level.  Commonly set to 95%, this level implies 

that 5% of the time we will incorrectly conclude that there is a 
difference when there is none (Type I error).  All else being 
equal, increasing this level reduces our power (below). 

2. Power.   Commonly desired to be around 80-95%, although not 
directly controlled.  If the Null Hypothesis is false, i.e., there is 
a difference in the OECs, the power is the probability of 
determining that the difference is statistically significant.  (A 
Type II error is one where we retain the Null Hypothesis when 
it is false.) 

3. Standard Error.  The smaller the Std-Err, the more powerful 
the test.  There are three useful ways to reduce the Std-Err: 
a. The estimated OEC is typically a mean of large samples. As 

shown  in Section 3.1, the Std-Err of a mean decreases 
proportionally to the square root of the sample size, so 
increasing the sample size, which usually implies running the 
experiment longer, reduces the Std-Err and hence increases 
the power. 

b. Use OEC components that have inherently lower variability, 
i.e., the Std-Dev, 𝜎, is smaller.  For example, conversion 

probability (0-100%) typically has lower Std-Dev than 
number of purchase units (typically small integers), which in 
turn has a lower Std-Dev than revenue (real-valued). 

c. Lower the variability of the OEC by filtering out users who 
were not exposed to the variants, yet were still included in 
the OEC.  For example, if you make a change to the checkout 
page, analyze only users who got to the page, as everyone 
else adds noise, increasing the variability.   

4. The effect, or the difference in OECs for the variants.  Larger 
differences are easier to detect, so great ideas will unlikely be 
missed.  Conversely, if Type I or Type II errors are made, they 
are more likely when the effects are small. 

 
The following formula approximates the desired sample size, 
assuming the desired confidence level is 95% and the desired 
power is 90% (31): 

𝑛 =  (4𝑟𝜎/Δ)^2 

where 𝑛 is the sample size, 𝑟 is the number of variants (assumed 

to be approximately equal in size), 𝜎 is the std-dev of the OEC, 

and Δ is the minimum difference between the OECs.  The factor 

of 4 may overestimate by 25% for large 𝑛 (32; 33), but the 
approximation suffices for the example below. 

Suppose you have an e-commerce site and 5% of users who visit 
during the experiment period end up purchasing. Those 
purchasing spend about $75.  The average user therefore spends 
$3.75 (95% spend $0).   Assume the standard deviation is $30.  If 
you are running an A/B test and want to detect a 5% change to 
revenue, you will need over 1.6 million users to achieve the 

desired 90% power, based on the above formula: 

  4 ∙ 2 ⋅ 30 / (3.75 ⋅ 0.05) 2. 

If, however, you were only looking for a 5% change in conversion 
rate (not revenue), a lower variability OEC based on point 3.b can 
be used.  Purchase, a conversion event, is modeled as a Bernoulli 
trial with p=0.05 being the probability of a purchase.  The Std-Err 

of a Bernoulli is  𝑝(1 − 𝑝) and thus you will need less than 

500,000 users to achieve the desired power based on 

  4 ∙ 2 ⋅  0.05 ⋅ (1 − 0.05) / (0.05 ⋅ 0.05) 
2
. 

Because of the square factor, if the goal is relaxed so that you 
want to detect a 20% change in conversion (a factor of 4), the 
number of users needed drops by a factor of 16 to 30,400. 

If you made a change to the checkout process, you should only 
analyze users who started the checkout process (point 3.c), as 
others could not see any difference and therefore just add noise.  

Assume that 10% of users initiate checkout and that 50% of those 
users complete it.  This user segment is more homogenous and 
hence the OEC has lower variability.  Using the same numbers as 
before, the average conversion rate is 0.5, the std-dev is 0.5, and 
thus you will need 25,600 users going through checkout to detect 

a 5% change based on   4 ∙ 2 ⋅  0.5 ⋅ (1 − 0.5) / (0.5 ⋅ 0.05) 
2
.  

Since we excluded the 90% who do not initiate, the total number 
of users to the website should be 256,000, which is almost half the 
previous result, thus the experiment could run for half the time 
and yield the same power. 

When running experiments, it is important to decide in advance 
on the OEC (a planned comparison); otherwise, there is an 
increased risk of finding what appear to be significant results by 
chance (familywise type I error) (6).  Several adjustments have 
been proposed in the literature (e.g., Fisher’s least-significant-
difference, Bonferroni adjustment, Duncan’s test, Scheffé’s test, 
Tukey’s test, and Dunnett’s test), but they basically equate to 
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increasing the 95% confidence level and thus reducing the 
statistical power (15; 16; 6). 

3.3 Extensions for Online Settings 
Several extensions to basic controlled experiments are possible in 
an online setting (e.g., on the web). 

3.3.1 Treatment Ramp-up 
An experiment can be initiated with a small percentage of users 
assigned to the treatment(s), and then that percentage can be 
gradually increased.  For example, if you plan to run an A/B test 
at 50%/50%, you might start with a 99.9%/0.1% split, then 
rampup the Treatment from 0.1% to 0.5% to 2.5% to 10% to 50%.  
At each step, which could run for, say, a couple of hours, you can 
analyze the data to make sure there are no egregious problems 

with the Treatment before exposing it to more users.  The square 
factor in the power formula implies that such errors could be 
caught quickly on small populations and the experiment can be 
aborted before many users are exposed to the bad treatment. 

3.3.2 Automation 
Once an organization has a clear OEC, it can run experiments to 
optimize certain areas amenable to automated search.  For 
example, the slots on the home page at Amazon are automatically 
optimized (3).  If decisions have to be made quickly (e.g., 
headline optimizations for portal sites), these could be made with 
lower confidence levels because the cost of mistakes is lower.  
Multi-armed bandit algorithms and Hoeffding Races can be used 
for such optimizations.  

3.3.3 Software Migrations 
Experiments can be used to help with software migration.  If a 

feature or a system is being migrated to a new backend, new 
database, or a new language, but is not expected to change user-
visible features, an A/B test can be executed with the goal of 
retaining the Null Hypothesis, which is that the variants are not 
different.   We have seen several such migrations, where the 
migration was declared complete, but an A/B test showed 
significant differences in key metrics, helping identify bugs in the 
port.  Because the goal here is to retain the Null Hypothesis, it is 
crucial to make sure the experiment has enough statistical power 
to actually reject the Null Hypothesis if it false.   

3.4 Limitations 
Despite significant advantages that controlled experiments 
provide in terms of causality, they do have limitations that need to 
be understood.  Some, which are noted in the Psychology 

literature are not relevant to the web (1 pp. 252-262; 17), but some 
limitations we encountered are certainly worth noting. 

1. Quantitative Metrics, but No Explanations. It is possible to 
know which variant is better, and by how much, but not ―why.‖ 
In user studies, for example, behavior is often augmented with 
users’ comments, and hence usability labs can be used to 
augment and complement controlled experiments (34). 

2. Short term vs. Long Term Effects. Controlled experiments 
measure the effect on the OEC during the experimentation 
period, typically a few weeks.   While some authors have 
criticized that focusing on a metric implies short-term focus 

(22) (34), we disagree.  Long-term goals should be part of the 
OEC. Let us take search ads as an example.  If your OEC is 
revenue, you might plaster ads over a page, but we know that 
many ads hurt the user experience, so a good OEC should 

include a penalty term of usage of real-estate for ads that are 
not clicked, and/or should directly measure repeat visits and 
abandonment. Likewise, it is wise to look at delayed conversion 
metrics, where there is a lag from the time a user is exposed to 
something and take action.  These are sometimes called latent 

conversions (24; 22).  Coming up with good OECs is hard, but 
what is the alternative?  The key point here is to recognize this 
limitation, but avoid throwing the baby out with the bathwater.   

3. Primacy and Newness Effects.   These are opposite effects 
that need to be recognized.  If you change the navigation on a 
web site, experienced users may be less efficient until they get 
used to the new navigation, thus giving an inherent advantage 
to the Control.    Conversely, when a new design or feature is 

introduced, some users will investigate it, click everywhere, 
and thus introduce a ―newness‖ bias.   This bias is sometimes 
associated with the Hawthorne Effect (35). Both primacy and 
newness concerns imply that some experiments need to be run 
for multiple weeks.   One analysis that can be done is to 
compute the OEC only for new users on the different variants, 
since they are not affected by either factor.  

4. Features Must be Implemented. A live controlled experiment 

needs to expose some users to a Treatment different than the 
current site (Control).   The feature may be a prototype that is 
being tested against a small portion, or may not cover all edge 
cases (e.g., the experiment may intentionally exclude 20% of 
browser types that would require significant testing).  
Nonetheless, the feature must be implemented and be of 
sufficient quality to expose users to it.   Jacob Nielsen (34) 
correctly points out that paper prototyping can be used for 

qualitative feedback and quick refinements of designs in early 
stages.  We agree and recommend that such techniques 
complement controlled experiments.  

5. Consistency.  Users may notice they are getting a different 
variant than their friends and family.  It is also possible that the 
same user will see multiple variants when using different 
computers (with different cookies).  It is relatively rare that 
users will notice the difference.  

6. Parallel Experiments.  Our experience is that strong 

interactions are rare in practice (33), and we believe this 
concern is overrated.  Raising awareness of this concern is 
enough for experimenters to avoid tests that can interact.  
Pairwise statistical tests can also be done to flag such 
interactions automatically. 

7. Launch Events and Media Announcements.  If there is a big 
announcement made about a new feature, such that the feature 
is announced to the media, all users need to see it.    

4. IMPLEMENTATION ARCHITECTURE 
Implementing an experiment on a website involves two 
components.  The first component is the randomization algorithm, 
which is a function that maps users to variants.  The second 
component is the assignment method, which uses the output of the 

randomization algorithm to determine the experience that each 
user will see on the website.  During the experiment, observations 
must be collected, and data needs to be aggregated and analyzed. 

4.1 Randomization Algorithm 
Finding a good randomization algorithm is critical because the 

statistics of controlled experiments assume that each variant of an 
experiment has a random sample of users.  Specifically, the 
randomization algorithm should have the following four 
properties:  
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1. Users must be equally likely to see each variant of an 
experiment (assuming a 50-50 split).  There should be no bias 
toward any particular variant. 

2. Repeat assignments of a single user must be consistent; the user 
should be assigned to the same variant on each successive visit 

to the site. 
3. When multiple experiments are run concurrently, there must be 

no correlation between experiments.  A user’s assignment to a 
variant in one experiment must have no effect on the 
probability of being assigned to a variant in any other 
experiment.   

4. The algorithm should support monotonic ramp-up (see 
Section 3.3.1), meaning that the percentage of users who see a 

Treatment can be slowly increased without changing the 
assignments of users who were already previously assigned to 
that Treatment. 

In the remainder of this section, we cover two different techniques 
that satisfy the above four requirements. 

4.1.1 Pseudorandom with caching 
A standard pseudorandom number generator can be used as the 
randomization algorithm when coupled with a form of caching.  A 
good pseudorandom number generator will satisfy the first and 
third requirements of the randomization algorithm. 

We tested several popular random number generators on their 
ability to satisfy the first and third requirements.  We tested five 
simulated experiments against one million sequential user IDs, 
running chi-square tests to look for interactions.  We found that 
the random number generators built into many popular languages 
(for example, C#) work well as long as the generator is seeded 
only once at server startup.  Seeding the random number generator 

on each request may cause adjacent requests to use the same seed 
(as it did in our tests), which will introduce noticeable correlations 
between experiments.  In particular, we found that the code for 
A/B tests suggested by Eric Peterson using Visual Basic (26) 
created strong two-way interactions between experiments. 

To satisfy the second requirement, the algorithm must introduce 
state: the assignments of users must be cached once they visit the 
site.  Caching can be accomplished either on the server side (e.g., 
by storing the assignments for users in some form of database), or 
on the client side (e.g., by storing a user’s assignment in a cookie). 

Both forms of this approach are difficult to scale up to a large 
system with a large fleet of servers.  The server making the 
random assignment must communicate its state to all the other 
servers (including those used for backend algorithms) in order to 
keep assignments consistent. 

The fourth requirement (monotonic ramp-up) is particularly 
difficult to implement using this method.  Regardless of which 

approach is used to maintain state, the system would need to 
carefully reassign Control users who visit the site after a ramp-up 
to a treatment.  We have not seen a system using pseudorandom-
based assignment that supports ramp-up. 

4.1.2 Hash and partition 
Unlike the pseudorandom approach, this method is completely 
stateless.  Each user is assigned a unique identifier, which is 
maintained either through a database or a cookie.  This identifier 
is appended onto the name or id of the experiment.  A hash 
function is applied to this combined identifier to obtain an integer 
which is uniformly distributed on a range of values.  The range is 
then partitioned, with each variant represented by a partition. 

This method is very sensitive to the choice of hash function.  If 
the hash function has any funnels (instances where adjacent keys 
map to the same hash code) then the first property (uniform 
distribution) will be violated.  And if the hash function has 
characteristics (instances where a perturbation of the key 

produces a predictable perturbation of the hash code), then 
correlations may occur between experiments.  Few hash functions 
are sound enough to be used in this technique. 

We tested this technique using several popular hash functions and 
a methodology similar to the one we used on the pseudorandom 
number generators.  While any hash function will satisfy the 
second requirement (by definition), satisfying the first and third is 
more difficult.  We found that only the cryptographic hash 
function MD5 generated no correlations between experiments.  
SHA256 (another cryptographic hash) came close, requiring a 
five-way interaction to produce a correlation.  The .NET string 
hashing function failed to pass even a two-way interaction test. 

4.2 Assignment Method 
The assignment method is the piece of software that enables the 
experimenting website to execute a different code path for 
different users.  There are multiple ways to implement an 
assignment method, with varying advantages and disadvantages. 

Traffic splitting is a method that involves implementing each 
variant of an experiment on a different fleet of servers, be it 

physical or virtual.  The website embeds the randomization 
algorithm into a load balancer or proxy server to split traffic 
between the variants.  Traffic requires no changes to existing code 
to implement an experiment.  However, the approach necessitates 
the setup and configuration of a parallel fleet for each unique 
combination of variants across all experiments being run, making 
the method the most expensive way to handle assignment. 

An alternative method is server-side selection, whereby API calls 
embedded into the website’s servers invoke the randomization 
algorithm and enable branching logic that produces a different 
user experience for each variant.  Server-side selection is an 

extremely general method that supports multiple experiments on 
any aspect of a website, from visual elements to backend 
algorithms.  However, it requires additional work from a 
developer to implement the code changes needed to run 
experiments. 

A final alternative is client-side selection, whereby JavaScript 
calls embedded into each web page contact a remote service for 
assignments and dynamically modify the page to produce the 
appropriate user experience.  Client-side experiments are 
generally easier to implement than server-side experiments 

because the developer need only embed canned snippets of 
JavaScript into each page.  However, this method severely limits 
the features that may be subject to experimentation; in particular, 
experiments on dynamic content or backend features are much 
harder to implement. 

 

5. LESSONS LEARNED 
The difference between theory and practice  

is larger in practice than  
the difference between theory and practice in theory  

— Jan L.A. van de Snepscheut 

Many theoretical techniques seem well suited for practical use and 
yet require significant ingenuity to apply them to messy real world 
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environments.  Controlled experiments are no exception.  Having 
run a large number of online experiments, we now share several 
practical lessons in three areas: (i) analysis; (ii) trust and 
execution; and (iii) culture and business. 

5.1 Analysis 

5.1.1 Mine the Data 
A controlled experiment provides more than just a single bit of 
information about whether the difference in OECs is statistically 
significant.   Rich data is typically collected that can be analyzed 
using machine learning and data mining techniques.  For example, 
an experiment showed no significant difference overall, but a 
population of users with a specific browser version was 
significantly worse for the Treatment.  The specific Treatment 

feature, which involved JavaScript, was buggy for that browser 
version and users abandoned.   Excluding the population from the 
analysis showed positive results, and once the bug was fixed, the 
feature was indeed retested and was positive. 

5.1.2 Speed Matters 
A Treatment might provide a worse user experience because of its 
performance. Greg Linden (36 p. 15) wrote that experiments at 
Amazon showed a 1% sales decrease for an additional 100msec, 
and that a specific experiments at Google, which increased the 
time to display search results by 500 msecs reduced revenues by 
20% (based on a talk by Marissa Mayer at Web 2.0).  If time is 
not directly part of your OEC, make sure that a new feature that is 
losing is not losing because it is slower. 

5.1.3 Test One Factor at a Time (or Not) 
Several authors (19 p. 76; 20) recommend testing one factor at a 

time.  We believe the advice, interpreted narrowly, is too 
restrictive and can lead organizations to focus on small 
incremental improvements.   Conversely, some companies are 
touting their fractional factorial designs and Taguchi methods, 
thus introducing complexity where it may not be needed. While it 
is clear that factorial designs allow for joint optimization of 
factors, and are therefore superior in theory (15; 16) our 
experience from running experiments in online web sites is that 
interactions are less frequent than people assume (33), and 

awareness of the issue is enough that parallel interacting 
experiments are avoided.  Our recommendations are therefore: 

 Conduct single-factor experiments for gaining insights and 
when you make incremental changes that could be decoupled.  

 Try some bold bets and very different designs.  For example, let 

two designers come up with two very different designs for a 
new feature and try them one against the other.    You might 

then start to perturb the winning version to improve it further.  
For backend algorithms it is even easier to try a completely 
different algorithm (e.g., a new recommendation algorithm).    
Data mining can help isolate areas where the new algorithm is 
significantly better, leading to interesting insights. 

 Use factorial designs when several factors are suspected to 

interact strongly.  Limit the factors and the possible values per 
factor because users will be fragmented (reducing power) and 
because testing the combinations for launch is hard. 

5.2 Trust and Execution  

5.2.1 Run Continuous A/A Tests 
Run A/A tests (see Section 3.1) and validate the following. 

1. Are users split according to the planned percentages? 
2. Is the data collected matching the system of record? 
3. Are the results showing non-significant results 95% of the 

time? 
Continuously run A/A tests in parallel with other experiments. 

5.2.2 Automate Ramp-up and Abort 
As discussed in Section 3.3, we recommend that experiments 
ramp-up in the percentages assigned to the Treatment(s).   By 

doing near-real-time analysis, experiments can be auto-aborted if 
a treatment is statistically significantly underperforming relative 
to the Control.  An auto-abort simply reduces the percentage of 
users assigned to a treatment to zero.  By reducing the risk in 
exposing many users to egregious errors, the organization can 
make bold bets and innovate faster.  Ramp-up is quite easy to do 
in online environments, yet hard to do in offline studies.  We have 
seen no mention of these practical ideas in the literature, yet they 
are extremely useful.  

5.2.3 Determine the Minimum Sample Size  
Decide on the statistical power, the effect you would like to 
detect, and estimate the variability of the OEC through an A/A 

test.  Based on this data you can compute the minimum sample 
size needed for the experiment and hence the running time for 
your web site.  A common mistake is to run experiments that are 
underpowered.  Consider the techniques mentioned in Section 3.2 
point 3 to reduce the variability of the OEC.  

5.2.4 Assign 50% of Users to Treatment 
One common practice among novice experimenters is to run new 
variants for only a small percentage of users. The logic behind 
that decision is that in case of an error only few users will see a 
bad treatment, which is why we recommend Treatment ramp-up. 
In order to maximize the power of an experiment and minimize 

the running time, we recommend that 50% of users see each of the 
variants in an A/B test.  Assuming all factors are fixed, a good 
approximation for the multiplicative increase in running time for 
an A/B test relative to 50%/50% is 1/(4𝑝 1 − 𝑝 ) where the 

treatment receives portion 𝑝 of the traffic.  For example, if an 

experiment is run at 99%/1%, then it will have to run about 25 
times longer than if it ran at 50%/50%. 

5.2.5 Beware of Day of Week Effects 
Even if you have a lot of users visiting the site, implying that you 
could run an experiment for only hours or a day, we strongly 
recommend running experiments for at least a week or two, then 
continuing by multiples of a week so that day-of-week effects can 
be analyzed.  For many sites the users visiting on the weekend 
represent different segments, and analyzing them separately may 
lead to interesting insights.   This lesson can be generalized to 

other time-related events, such as holidays and seasons, and to 
different geographies: what works in the US may not work well in 
France, Germany, or Japan. 

 

Putting 5.2.3, 5.2.4, and 5.2.5 together, suppose that the power 

calculations imply that you need to run an A/B test for a minimum 
of 5 days, if the experiment were run at 50%/50%.  We would 
then recommend running it for a week to avoid day-of-week 
effects and to increase the power over the minimum.  However, if 
the experiment were run at 95%/5%, the running time would have 
to be increased by a factor of 5 to 25 days, in which case we 
would recommend running it for four weeks.  Such an experiment 
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should not be run at 99%/1% because it would require over 125 
days, a period we consider too long for reliable result; factors, 
such as cookie churn, that have secondary impact in experiments 
running for a few weeks may start contaminating the data. 

5.3 Culture and Business 
5.3.1 Agree on the OEC Upfront  
One of the powers of controlled experiments is that it can 
objectively measure the value of new features for the business.  
However, it best serves this purpose when the interested parties 
have agreed on how an experiment is to be evaluated before the 
experiment is run.   
While this advice may sound obvious, it is infrequently applied 
because the evaluation of many online features is subject to 
several, often competing objectives.   OECs can be combined 
measures, which transform multiple objectives, in the form of 
experimental observations, into a single metric.  In formulating an 
OEC, an organization is forced to weigh the value of various 
inputs and decide their relative importance.  A good technique is 
to assess the lifetime value of users and their actions.  For 
example, a search from a new user may be worth more than an 
additional search from an existing user.  Although a single metric 
is not required for running experiments, this hard up-front work 
can align the organization and clarify goals. 

5.3.2 Beware of Launching Features that ―Do Not 
Hurt‖ Users 
When an experiment yields no statistically significant difference 
between variants, this may mean that there truly is no difference 
between the variants or that the experiment did not have sufficient 
power to detect the change.  In the face of a ―no significant 
difference‖ result, sometimes the decision is made to launch the 
change anyway ―because it does not hurt anything.‖  It is possible 
that the experiment is negative but underpowered.  

5.3.3 Weigh the Feature Maintenance Costs 
An experiment may show a statistically significant difference 
between variants, but choosing to launch the new variant may still 
be unjustified because of maintenance costs.  A small increase in 
the OEC may not outweigh the cost of maintaining the feature.   

5.3.4 Change to a Data-Driven Culture 
Running a few online experiments can provide great insights into 
how customers are using a feature.  Running frequent experiments 
and using experimental results as major input to company 
decisions and product planning can have a dramatic impact on 
company culture.  Software organizations shipping classical 
software developed a culture where features are completely 
designed prior to implementation.  In a web world, we can 
integrate customer feedback directly through prototypes and 
experimentation.  If an organization has done the hard work to 
agree on an OEC and vetted an experimentation system, 
experimentation can provide real data and move the culture 
towards attaining shared goals rather than battle over opinions. 

6. SUMMARY 
Almost any question can be answered cheaply, quickly and 

 finally, by a test campaign.  And that's the way 
 to answer them – not by arguments around a table. 

 Go to the court of last resort – buyers of your products. 
— Claude Hopkins, Scientific Advertising, 1922 

Classical knowledge discovery and data mining provide insight, 
but the patterns discovered are correlational and therefore pose 
challenges in separating useful actionable patterns from those 
caused by ―leaks‖ (37).  Controlled experiments neutralize 
confounding variables by distributing them equally over all values 
through random assignment (6), thus establishing a causal 
relationship between the changes made in the different variants 
and the measure(s) of interest, including the Overall Evaluation 
Criterion (OEC).  Using data mining techniques in this setting can 
thus provide extremely valuable insights, such as the 
identification of segments that benefit from a feature introduce in 
a controlled experiment, leading to a virtuous cycle of 
improvements in features and better personalization.   
The basic ideas in running controlled experiments are easy to 
understand, but a comprehensive overview for the web was not 
previously available.  In addition, there are important new lessons 
and insights that we shared throughout the paper, including 
generalized architectures, ramp-up and aborts, the practical 
problems with randomization and hashing techniques, and 
organizational issues, especially as they relate to OEC. 
Many organizations have strong managers who have strong 
opinions, but lack data, so we started to use the term HiPPO, 
which stands for Highest Paid Person’s Opinion, as a way to 
remind everyone that success really depends on the users’ 
perceptions.   Some authors have called experimentation the ―New 
Imperative for Innovation‖ (38) and point out that ―new 
technologies are making it easier than ever to conduct complex 
experiments quickly and cheaply.‖  We agree and believe that 
companies can accelerate innovation through experimentation 
because it is the customers’ experience that ultimately matters.  
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