Extracting Product Feature Assessments from

Reviews

Ana-Maria Popescu Oren Etzioni http://www.cs.washington.edu/homes/amp

1

5

Overview

Motivation & Terminology Opinion Mining Work Overview of OPINE Product Feature Extraction Customer Opinion Extraction Experimental Results Conclusion and Future Work

Motivation

Reviews abound on the Web

consumer electronics, hotels, etc. Automatic extraction of customer opinions can benefit both manufacturers and customers

Other Applications

Automatic analysis of survey information Automatic analysis of newsgroup posts

Terminology

Reviews contain features and opinions.

Product features include:

Parts Properties Related Concepts

> Explicit Implicit

the cover of the scanner the size of the Epson3200 the image from this scanner Properties & Parts of Related Concepts

2

the image size for the HP610 Product features can be:

the size is too big the scanner is not small

Terminology

Reviews contain features and opinions.

Opinions can be expressed by:

Adjectives Nouns Verbs Adverbs

noisv scanner scanner is a disappointment I love this scanner the scanner performs beautifully

Opinions are characterized by polarity (+, -) and strength (great > good).

Opinion Mining Work

Extract positive/negative opinion words Hatzivassiloglou & McKeown'97, Turney'03, etc.

Opinion Mining Work

Extract positive/negative opinion words Hatzivassiloglou & McKeown'97, Turney'03, etc. Classify reviews as positive or negative Turney'02, Pang'02, Kushal'03

Opinion Mining Work

Extract positive/negative opinion words Hatzivassilogiou & McKeown'97, Turney'03, etc. Classify reviews as positive or negative Turney'02, Pang'02, Kushal'03 Identify feature-opinion pairs together with the polarity of each opinion Hu & Liu'04, Hu & Liu'05

8

10

Opinion Mining Work

7

Extract positive/negative opinion words

Hatzivassiloglou & McKeown'97, Turney'03, etc.

Classify reviews as positive or negative Turney'02, Pang'02, Kushal'03 Identify feature-opinion pairs together with the

polarity of each opinion Hu & Liu'04, Hu & Liu'05

OPINE: High-precision feature-opinion extraction, opinion polarity and strength extraction

The OPINE System

Hotel Majestic, Barcelona: HotelNoise			
OpinionPhrase	Rank	Polarity	Frequency
Deafening	1	-	2
Loud	2	-	7
Silent	3	+	3
Quiet	4	+	4

Sample OPINE output in the Hotel domain

Explicit Feature Extraction

Given product class C

1. Extract parts and properties of C Recursively extract parts and properties of C's parts and properties, etc.

13

2. Extract related concepts of C (Popescu & all, 2004) Extract parts and properties of related concepts

OPINE then determines the polarity of each potential opinion phrase.

Implicit Properties

Adjectival opinions refer to implicit or explicit properties Example: slow driver speed, slow driver

OPINE extracts properties corresponding to adjectives and uses them to derive implicit features

 Clarity:
 intuitive understandable clear straightforward

 Noise:
 silent noisy quiet loud deafening

 Price:
 cheap inexpensive affordable expensive

Implicit Features:

the interface is intuitive straightforward interface

clarity(interface): intuitive clarity(interface): straightforward

Clustering Adjectives

Rank Opinion Phrases

Initial opinion phrase ranking

Derived from the magnitude of the SO scores: |SO(great)| > |SO(good)|: great > good

|SO(great)| > |SO(good)|: great > goo Final opinion phrase ranking

Given cluster A

Use patterns such as

[a, even a'] [a, just not a'] [a, but not a'], etc.

to derive set S of constraints on relative opinion strength c = silent > quiet c=deafening > loud Augment S with antonymy/synonymy constraints

Augment S with antonymy/synonymy constraint Solve CSP_s to find final opinion phrase ranking

HotelNoise: deafening > loud > silent > quiet

21

19

Opinion Sentences

Opinion sentences are sentences containing at least one product feature and at least one corresponding opinion.

Determining Opinion Sentence Polarity

Determine the average strength s of sentence opinions op If s > t,

Sentence polarity is indicated by the sign of $\ensuremath{\mathsf{s}}$ Else

Sentence polarity is that of the previous sentence

Experimental Results

Datasets: 7 product classes, 1621 reviews 5 product classes from Hu&Liu'04 2 additional classes: Hotels, Scanners

Experiments:

 Feature Extraction:
 Hu&Liu'04 vs. OPINE

 Opinion Sentences:
 Hu&Liu'04 vs. OPINE

 Opinion Phrase Extraction & Ranking:
 OPINE

23

20

OPINE Experiments

Extracting opinion phrases for a given feature: P = 86%, R = 82%

Parser errors reduce precision

Some neutral adjectives can acquire a pos/neg polarity in context - these adjectives can lead to reduced precision/recall Opinion Phrase Polarity Extraction

P = 91%

Precision is reduced by adjectives which can acquire either a positive or a negative connotation: visible Ranking Opinion Phrases Based on Strength

P = 93%

25

Conclusion & Future Work

OPINE is a high-precision opinion mining system which extracts fine-grained features and associated opinions from reviews.

OPINE successfully uses the Web in order to improve precision.

Future Work

Use OPINE's output to generate review summaries at different levels of granularity.

Augment the opinion vocabulary.

Allow comparisons of different products with respect to a given feature.