
1

1

Text Categorization

CSE 454
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Course Overview

Systems Foundation: Networking & Clusters

Datamining

Synchronization & Monitors 

Crawler Architecture

Case Studies: Nutch, Google, Altavista

Information Retrieval
Precision vs Recall
Inverted Indicies

P2P Security
Web Services
Semantic Web

Info Extraction Ecommerce
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Why is Learning Possible?

Experience alone never justifies any 
conclusion about any unseen instance.

Learning occurs when 
PREJUDICE meets DATA!

Learning a “FOO”
4

Bias

• The nice word for prejudice is “bias”.
• What kind of hypotheses will you consider?

– What is allowable range of functions you use when 
approximating?

• What kind of hypotheses do you prefer?
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Some Typical Bias: The World is Simple 

• Occam’s razor
“It is needless to do more when less will suffice” 
– William of Occam, 

died 1349 of the Black plague

• MDL – Minimum description length
• Concepts can be approximated by 

... conjunctions of predicates

... by linear functions

... by short decision trees
6

A Learning Problem
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Hypothesis Spaces
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Terminology
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Two Strategies for ML
• Restriction bias: use prior knowledge to 

specify a restricted hypothesis space.
– Naïve Bayes

• Preference bias: use a broad hypothesis 
space, but impose an ordering on the 
hypotheses.

– Decision Trees.
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Key Issues for ML
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Framework for Learning Algos



3

13

Categorization (review)
• Given:

– A description of an instance, x∈X, where X is 
the instance language or instance space.

– A fixed set of categories:                          
C={c1, c2,…cn}

• Determine:
– The category of x: c(x)∈C, where c(x) is a 

categorization function whose domain is X and 
whose range is C.
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Learning for Categorization
• A training example is an instance x∈X, 

paired with its correct category c(x):         
<x, c(x)> for an unknown categorization 
function, c. 

• Given a set of training examples, D.
• Find a hypothesized categorization function, 

h(x), such that:
)()(: )(, xcxhDxcx =∈><∀

Consistency
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Sample Category Learning 
Problem

• Instance language: <size, color, shape>
– size ∈ {small, medium, large}
– color ∈ {red, blue, green}
– shape ∈ {square, circle, triangle}

• C = {positive, negative}
• D:

negativetriangleredsmall3

positivecircleredlarge2

positivecircleredsmall1

negativecirclebluelarge4

CategoryShapeColorSizeExample

16

More to the Point
• C(X) = true if X is a Webcam page
• Features

Words on page
….

• Hypothesis Language
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Generalization
• Hypotheses must generalize to correctly classify 

instances not in the training data.
– Simply memorizing training examples gives a 

consistent hypothesis that does not generalize.
• Occam’s razor:

– Finding a simple hypothesis helps ensure 
generalization.
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Text Categorization
• Assigning documents to a fixed set of categories.
• Applications:

– Web pages
• Categories in search (see microsoft.com)
• Yahoo-like classification

– Newsgroup Messages / News articles
• Recommending
• Personalized newspaper

– Email messages
• Routing
• Prioritizing 
• Folderizing
• spam filtering
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General Learning Issues
• Many hypotheses often consistent w/ training data.
• Bias

– Any criteria other than consistency with the training 
data that is used to select a hypothesis.

• Classification accuracy 
– % of instances classified correctly
– Measured on independent test data.

• Training time 
– Efficiency of training algorithm

• Testing time 
– Efficiency of subsequent classification

20

Learning for Text Categorization
• Manual development of text categorization 

functions is difficult.
• Learning Algorithms:

– Bayesian (naïve)
– Neural network
– Relevance Feedback (Rocchio)
– Rule based (C4.5, Ripper, Slipper)
– Nearest Neighbor (case based)
– Support Vector Machines (SVM)
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Using Relevance Feedback 
(Rocchio)

• Adapt relevance feedback for text categorization.
• Use standard TF/IDF weighted vectors to represent 

text documents (normalized by maximum term 
frequency).

• For each category, compute a prototype vector by 
summing the vectors of the training documents in 
the category.

• Assign test documents to the category with the 
closest prototype vector based on cosine similarity.
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Rocchio Text Categorization Algorithm
(Training)

Assume the set of categories is {c1, c2,…cn}
For i from 1 to n let pi = <0, 0,…,0>  (init. prototype vectors)
For each training example <x, c(x)> ∈ D

Let d = frequency normalized TF/IDF term vector for doc x
Let i =  j: (cj = c(x))
(sum all the document vectors in ci to get pi)
Let pi = pi + d
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Rocchio Text Categorization Algo
(Test)

Given test document x
Let d be the TF/IDF weighted term vector for x
Let m = –2      (init. maximum cosSim)
For i from 1 to n:

(compute similarity to prototype vector)
Let s = cosSim(d, pi)
if s > m

let m = s
let r = ci (update most similar class prototype)

Return class r

24

Illustration of Rocchio Text 
Categorization
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Rocchio Properties 
• Does not guarantee a consistent hypothesis.
• Forms a simple generalization of the 

examples in each class (a prototype).
• Prototype vector does not need to be 

averaged or otherwise normalized for length 
since cosine similarity is insensitive to 
vector length.

• Classification is based on similarity to class 
prototypes.
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Rocchio Time Complexity
• Note: The time to add two sparse vectors is 

proportional to minimum number of non-zero 
entries in the two vectors.

• Training Time:  O(|D|(Ld + |Vd|)) = O(|D| Ld)   
where Ld is the average length of a document in D and Vd
is the average vocabulary size for a document in D.

• Test Time: O(Lt + |C||Vt|)                                 
where Lt  is the average length of a test document and |Vt | 
is the average vocabulary size for a test document.
– Assumes lengths of pi vectors are computed and stored during 

training, allowing cosSim(d, pi) to be computed  in time 
proportional to the number of non-zero entries in d (i.e. |Vt|)
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Nearest-Neighbor Learning 
Algorithm

• Learning is just storing the representations of the 
training examples in D.

• Testing instance x:
– Compute similarity between x and all examples in D.
– Assign x the category of the most similar example in D.

• Does not explicitly compute a generalization or 
category prototypes.

• Also called:
– Case-based
– Memory-based
– Lazy learning
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K Nearest-Neighbor
• Using only the closest example to determine 

categorization is subject to errors due to:
– A single atypical example. 
– Noise (i.e. error) in the category label of a 

single training example.
• More robust alternative is to find the k

most-similar examples and return the 
majority category of these k examples.

• Value of k is typically odd to avoid ties, 3 
and 5 are most common.
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Similarity Metrics
• Nearest neighbor method depends on a 

similarity (or distance) metric.
• Simplest for continuous m-dimensional 

instance space is Euclidian distance.
• Simplest for m-dimensional binary instance 

space is Hamming distance (number of 
feature values that differ).

• For text, cosine similarity of TF-IDF 
weighted vectors is typically most effective.

30

3 Nearest Neighbor Illustration
(Euclidian Distance)

.. .
.

. .
. .
...
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K Nearest Neighbor for Text
Training:
For each each training example <x, c(x)> ∈ D

Compute the corresponding TF-IDF vector, dx, for document x

Test instance y:
Compute TF-IDF vector d for document y
For each <x, c(x)> ∈ D

Let sx = cosSim(d, dx)
Sort examples, x, in D by decreasing value of sx
Let N be the first k examples in D.     (get most similar neighbors)
Return the majority class of examples in N
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Illustration of 3 Nearest Neighbor 
for Text
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Rocchio Anomaly   
• Prototype models have problems with 

polymorphic (disjunctive) categories.

Cause: 
stro

ng bias 
of R

occh
io lear

ner
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3 Nearest Neighbor Comparison
• Nearest Neighbor tends to handle 

polymorphic categories better. 
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Nearest Neighbor Time 
Complexity

• Training Time: O(|D| Ld) to compose        
TF-IDF vectors.

• Testing Time: O(Lt + |D||Vt|) to compare to 
all training vectors.
– Assumes lengths of dx vectors are computed and stored 

during training, allowing cosSim(d, dx) to be computed  
in time proportional to the number of non-zero entries 
in d (i.e. |Vt|)

• Testing time can be high for large training 
sets.
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Nearest Neighbor 
with Inverted Index

• Determining k nearest neighbors is the same as 
determining the k best retrievals using the test 
document as a query to a database of training 
documents.

• Use standard VSR inverted index methods to find 
the k nearest neighbors.

• Testing Time: O(B|Vt|)                                     
where B is the average number of training documents in 
which a test-document word appears.

• Therefore, overall classification is O(Lt + B|Vt|) 
– Typically B << |D|
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Bayesian Methods
• Learning and classification methods based on 

probability theory.
– Bayes theorem plays a critical role in probabilistic 

learning and classification.
– Uses prior probability of each category given no 

information about an item.
• Categorization produces a posterior probability 

distribution over the possible categories given a 
description of an item.

38

Axioms of Probability Theory
• All probabilities between 0 and 1

• True proposition has probability 1, 
False has probability 0. 

P(true) = 1        P(false) = 0.
• The probability of  disjunction is:

1)(0 ≤≤ AP

)()()()( BAPBPAPBAP ∧−+=∨

A BBA∧
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Probability: Simple & logical

A
B

A ∧ B

E.g. P(A∨B) =          ?        

Tr
ue

P(A) + P(B) - P(A∧B)
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Conditional Probability 
• P(A | B) is the probability of A given B
• Assumes that B is all and only information 

known.
• Defined by:

)(
)()|(

BP
BAPBAP ∧

=

A BBA∧

41

Independence
• A and B are independent iff:

• Therefore, if A and B are independent:

)()|( APBAP =

)()|( BPABP =

)(
)(

)()|( AP
BP

BAPBAP =
∧

=

)()()( BPAPBAP =∧

These two constraints are logically equivalent
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Bayes Theorem

Simple proof from definition of conditional probability:

)(
)()|()|(

EP
HPHEPEHP =

)(
)()|(

EP
EHPEHP ∧

=

)(
)()|(

HP
EHPHEP ∧

=

)()|()( HPHEPEHP =∧

QED:

(Def. cond. prob.)

(Def. cond. prob.)

)(
)()|()|(

EP
HPHEPEHP =

(Replace 3 in 1.)

(Mult both sides of 2 by P(H).)
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Bayesian Categorization
• Let set of categories be {c1, c2,…cn}
• Let E be description of an instance.
• Determine category of E by determining for each ci

• P(E) can be determined since categories are 
complete and disjoint.
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Bayesian Categorization (cont.)
• Need to know:

– Priors: P(ci) 
– Conditionals: P(E | ci)

• P(ci) are easily estimated from data. 
– If ni of the examples in D are in ci,then P(ci) =  ni / |D|

• Assume instance is a conjunction of binary features:

• Too many possible instances (exponential in m) to 
estimate all P(E | ci)

meeeE ∧∧∧= L21
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Naïve Bayesian Categorization
• If we assume features of an instance are 

independent given the category (ci) 
(conditionally independent).

• Therefore, we then only need to know     
P(ej | ci) for each feature and category.

)|()|()|(
1

21 ∏
=

=∧∧∧=
m

j
ijimi cePceeePcEP L
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Naïve Bayes Example
• C = {allergy, cold, well}
• e1 = sneeze; e2 = cough; e3 = fever
• E = {sneeze, cough, ¬fever}

0.40.70.01P(fever|ci)
0.70.80.1P(cough|ci)
0.90.90.1P(sneeze|ci)
0.050.050.9P(ci)

AllergyColdWellProb
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Naïve Bayes Example (cont.)

P(well | E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)
P(cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)
P(allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

Most probable category: allergy
P(E) = 0.089 + 0.01 + 0.019 = 0.0379
P(well | E) = 0.23
P(cold | E) = 0.26
P(allergy | E) = 0.50

0.40.70.01P(fever | ci)

0.70.80.1P(cough | ci)

0.90.90.1P(sneeze | ci)

0.050.050.9P(ci)

AllergyColdWellProbability

E={sneeze, cough, ¬fever}
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Estimating Probabilities
• Normally, probabilities are estimated based on 

observed frequencies in the training data.
• If D contains ni examples in category ci, and nij of 

these ni examples contains feature ej, then:

• However, estimating such probabilities from small 
training sets is error-prone.

• If due only to chance, a rare feature, ek, is always 
false in the training data, ∀ci :P(ek | ci) = 0.

• If ek then occurs in a test example, E, the result is 
that ∀ci: P(E | ci) = 0 and ∀ci: P(ci | E) = 0

i

ij
ij n

n
ceP =)|(
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Smoothing
• To account for estimation from small samples, 

probability estimates are adjusted or smoothed.
• Laplace smoothing using an m-estimate assumes that 

each feature is given a prior probability, p, that is 
assumed to have been previously observed in a 
“virtual” sample of size m.

• For binary features, p is simply assumed to be 0.5.

mn
mpn

ceP
i

ij
ij +

+
=)|(

50

Naïve Bayes for Text
• Modeled as generating a bag of words for a 

document in a given category by repeatedly 
sampling with replacement from a 
vocabulary V = {w1, w2,…wm} based on the 
probabilities P(wj | ci).

• Smooth probability estimates with Laplace
m-estimates assuming a uniform distribution 
over all words (p = 1/|V|) and m = |V|
– Equivalent to a virtual sample of seeing each word in 

each category exactly once.
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Text Naïve Bayes Algorithm
(Train)

Let V be the vocabulary of all words in the documents in D
For each category ci ∈ C

Let Di be the subset of documents in D in category ci
P(ci) = |Di| / |D|
Let Ti be the concatenation of all the documents in Di
Let ni be the total number of word occurrences in Ti
For each word wj∈ V

Let nij be the number of occurrences of wj in Ti
Let P(wi | ci) = (nij + 1) / (ni + |V|)  
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Text Naïve Bayes Algorithm
(Test)

Given a test document X
Let n be the number of word occurrences in X
Return the category:

where ai is the word occurring the ith position in X

)|()(argmax
1
∏
=∈

n

i
iii

Cic
caPcP
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Naïve Bayes Time Complexity
• Training Time:  O(|D|Ld + |C||V|))           

where Ld is the average length of a document in D.
– Assumes V and all Di , ni, and nij pre-computed in 

O(|D|Ld) time during one pass through all of the data.
– Generally just O(|D|Ld) since usually |C||V| < |D|Ld

• Test Time: O(|C| Lt)                                
where Lt  is the average length of a test document.

• Very efficient overall, linearly proportional to the 
time needed to just read in all the data.

• Similar to Rocchio time complexity.
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Underflow Prevention
• Multiplying lots of probabilities, which are 

between 0 and 1 by definition, can result in 
floating-point underflow.

• Since log(xy) = log(x) + log(y), it is better to 
perform all computations by summing logs 
of probabilities rather than multiplying 
probabilities.

• Class with highest final un-normalized log 
probability score is still the most probable.
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Naïve Bayes Posterior 
Probabilities

• Classification results of naïve Bayes (the class 
with maximum posterior probability) are usually 
fairly accurate.

• However, due to the inadequacy of the 
conditional independence assumption, the actual 
posterior-probability numerical estimates are not
accurate.
– Output probabilities are generally very close to 0 or 

1.
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Evaluating Categorization
• Evaluation must be done on test data that are 

independent of the training data (usually a disjoint set 
of instances).

• Classification accuracy: c/n where n is the total 
number of test instances and c is the number of test 
instances correctly classified by the system.

• Results can vary based on sampling error due to 
different training and test sets.

• Average results over multiple training and test sets 
(splits of the overall data) for the best results.

57

N-Fold Cross-Validation
• Ideally, test and training sets are independent on each 

trial.
– But this would require too much labeled data.

• Partition data into N equal-sized disjoint segments.
• Run N trials, each time using a different segment of 

the data for testing, and training on the remaining N−1 
segments.

• This way, at least test-sets are independent.
• Report average classification accuracy over the N

trials.
• Typically, N = 10.
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Learning Curves
• In practice, labeled data is usually rare and 

expensive.
• Would like to know how performance varies 

with the number of training instances.
• Learning curves plot classification accuracy on 

independent test data (Y axis) versus number 
of training examples (X axis).
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N-Fold Learning Curves
• Want learning curves averaged over multiple 

trials.
• Use N-fold cross validation to generate N full 

training and test sets.
• For each trial, train on increasing fractions of 

the training set, measuring accuracy on the test 
data for each point on the desired learning 
curve.
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Sample Learning Curve
(Yahoo Science Data)


