Text Categorization

CSE 454

Course Overview

Info Extraction Ecommerce

Datamining P2P Security Web Services
Semantic Web

Case Studies: Nutch, Google, Altavista

Information Retrieval Precision vs Recall Inverted Indicies Synchronization & Monitors

Systems Foundation: Networking & Clusters

Why is Learning Possible?

Experience alone never justifies any conclusion about any unseen instance.

Learning occurs when PREJUDICE meets DATA!

Learning a "FOO"

Bias

- The nice word for prejudice is "bias".
- What kind of hypotheses will you consider?
 - What is allowable *range* of functions you use when approximating?
- What kind of hypotheses do you prefer?

Some Typical Bias: The World is Simple

- Occam's razor
 - "It is needless to do more when less will suffice"
 - William of Occam,

died 1349 of the Black plague

- MDL Minimum description length
- Concepts can be approximated by
 - ... conjunctions of predicates
 - ... by linear functions
 - ... by short decision trees

A Learning Problem

Unknown

Yungtion

y = f(x1, x2, x3, x4)

Example x_1 x_2 x_3 x_4 y1 0 0 1 0 0

2 0 1 0 0 0

3 0 0 1 1 1

4 1 0 0 0 1

5 0 1 1 0 0

6 1 1 0 0 0

7 0 1 0 1

0

Hypothesis Spaces

 Complete Ignorance. There are 2¹⁶ = 65536 possible boolean functions over four input features. We can't figure out which one is correct until we've seen every possible input-output pair. After 7 examples, we still have 2⁶ possibilities.

Hypothesis Spaces (2)

 \bullet \mathbf{Simple} $\mathbf{Rules.}$ There are only 16 simple conjunctive rules.

Rule	Counterexample
$\Rightarrow y$	1
$x_1 \Rightarrow y$	3
$x_2 \Rightarrow y$	2
$x_3 \Rightarrow y$	1
$x_4 \Rightarrow y$	7
$x_1 \wedge x_2 \Rightarrow y$	3
$x_1 \wedge x_3 \Rightarrow y$	3
$x_1 \land x_4 \Rightarrow y$	3
$x_2 \land x_3 \Rightarrow y$	3
$x_2 \land x_4 \Rightarrow y$	3
$x_3 \land x_4 \Rightarrow y$	4
$x_1 \wedge x_2 \wedge x_3 \Rightarrow y$	3
$x_1 \wedge x_2 \wedge x_4 \Rightarrow y$	3
$x_1 \wedge x_3 \wedge x_4 \Rightarrow y$	3
$x_2 \wedge x_3 \wedge x_4 \Rightarrow y$	3
$x_1 \wedge x_2 \wedge x_3 \wedge x_4 \Rightarrow y$	3

No simple rule explains the data. The same is true for simple clauses.

Terminology

- Training example. An example of the form $\langle \mathbf{x}, f(\mathbf{x}) \rangle$.
- Target function (target concept). The true function f.
- ullet Hypothesis. A proposed function h believed to be similar to f.
- Concept. A boolean function. Examples for which f(x) = 1 are called positive examples or positive instances of the concept. Examples for which f(x) = 0 are called negative examples or negative instances.
- Classifier. A discrete-valued function. The possible values $f(\mathbf{x}) \in \{1,\dots,K\}$ are called the classes or class labels.
- Hypothesis Space. The space of all hypotheses that can, in principle, be output by a learning algorithm.
- Version Space. The space of all hypotheses in the hypothesis space that have not yet been ruled out by a training example.

Two Strategies for ML

- Restriction bias: use prior knowledge to specify a restricted hypothesis space.
 - -Naïve Bayes
- Preference bias: use a broad hypothesis space, but impose an ordering on the hypotheses.
 - -Decision Trees.

10

Key Issues for ML

- What are good hypothesis spaces?
 Which spaces have been useful in practical applications and why?
- What algorithms can work with these spaces?
 Are there general design principles for machine learning algorithms?
- How can we optimize accuracy on future data points?
 This is sometimes called the "problem of overfitting".
- How can we have confidence in the results?

 How much training data is required to find accurate hypotheses? (the statistical question)
- \bullet Are some learning problems computationally intractable? (the $computational\ question)$
- How can we formulate application problems as machine learning problems? (the engineering question)

Framework for Learning Algos

• Search Procedur

Direction Computation: solve for the hypothesis directly.

Local Search: start with an initial hypothesis, make small improvements until a local optimum.

Constructive Search: start with an empty hypothesis, gradually add structure to it until local optimum.

• Timing

Eager: Analyze the training data and construct an explicit hypothesis.

Lazy: Store the training data and wait until a test data point is presented, then construct

Lazy: Store the training data and wait until a test data point is presented, then construct an ad hoc hypothesis to classify that one data point.

• Online vs. Batch. (for eager algorithms)

Online: Analyze each training example as it is presented.

 ${\bf Batch}:$ Collect training examples, analyze them, output an hypothesis.

Categorization (review)

- Given:
 - A description of an instance, $x \in X$, where X is the *instance language* or *instance space*.
 - A fixed set of categories: $C = \{c_1, c_2,...c_n\}$
- Determine:
 - The category of x: $c(x) \in C$, where c(x) is a categorization function whose domain is X and whose range is C.

13

Learning for Categorization

- A training example is an instance x∈X, paired with its correct category c(x):
 <x, c(x)> for an unknown categorization function, c.
- Given a set of training examples, D.
- Find a hypothesized categorization function, h(x), such that:

 $\forall < x, c(x) > \in D : h(x) = c(x)$

Consistency

..

Sample Category Learning Problem

- Instance language: <size, color, shape>
 - size ∈ {small, medium, large}
 - color \in {red, blue, green}
 - shape ∈ {square, circle, triangle}
- $C = \{ positive, negative \}$
- D: Example Size Color Shape Category red small circle positive large red circle positive triangle small red negative large blue circle negative

More to the Point

- C(X) = true if X is a Webcam page
- Features

Words on page

• • • •

• Hypothesis Language

16

Generalization

- Hypotheses must generalize to correctly classify instances not in the training data.
 - Simply memorizing training examples gives a consistent hypothesis that does not generalize.
- Occam's razor:
 - Finding a *simple* hypothesis helps ensure generalization.

Text Categorization

- Assigning documents to a fixed set of categories.
- Applications:
 - Web pages
 - Categories in search (see microsoft.com)
 - Yahoo-like classification
 - Newsgroup Messages / News articles
 - Recommending
 - Personalized newspaper
 - Email messages
 - Routing
 - Prioritizing
 - Folderizing
 - spam filtering

18

General Learning Issues

- Many hypotheses often consistent w/ training data.
- Rias
 - Any criteria other than consistency with the training data that is used to select a hypothesis.
- Classification accuracy
 - % of instances classified correctly
 - Measured on independent test data.
- Training time
 - Efficiency of training algorithm
- Testing time
 - Efficiency of subsequent classification

...

Learning for Text Categorization

- Manual development of text categorization functions is difficult.
- Learning Algorithms:
 - Bayesian (naïve)
 - Neural network
 - Relevance Feedback (Rocchio)
 - Rule based (C4.5, Ripper, Slipper)
 - Nearest Neighbor (case based)
 - Support Vector Machines (SVM)

20

Using Relevance Feedback (Rocchio)

- Adapt relevance feedback for text categorization.
- Use standard TF/IDF weighted vectors to represent text documents (normalized by maximum term frequency).
- For each category, compute a *prototype* vector by summing the vectors of the training documents in the category.
- Assign test documents to the category with the closest prototype vector based on cosine similarity.

21

Rocchio Text Categorization Algorithm (Training)

Assume the set of categories is $\{c_1, c_2, ... c_n\}$

For *i* from 1 to *n* let $\mathbf{p}_i = <0, 0,...,0>$ (*init. prototype vectors*)

For each training example $\langle x, c(x) \rangle \in D$

Let \mathbf{d} = frequency normalized TF/IDF term vector for doc xLet i = j: $(c_i = c(x))$

(sum all the document vectors in c_i to get p_i)

Let $\mathbf{p}_i = \mathbf{p}_i + \mathbf{d}$

22

Rocchio Text Categorization Algo (Test)

Given test document x

Let **d** be the TF/IDF weighted term vector for x

Let m = -2 (init. maximum cosSim)

For i from 1 to n:

(compute similarity to prototype vector)

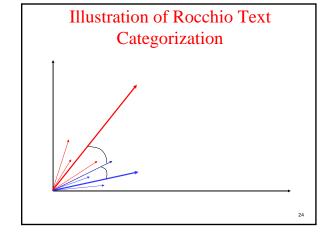
Let $s = \cos \operatorname{Sim}(\mathbf{d}, \mathbf{p}_i)$

if s > m

let m = 3

let $r = c_i$ (update most similar class prototype)

Return class r



Rocchio Properties

- Does not guarantee a consistent hypothesis.
- Forms a simple generalization of the examples in each class (a *prototype*).
- Prototype vector does not need to be averaged or otherwise normalized for length since cosine similarity is insensitive to vector length.
- Classification is based on similarity to class prototypes.

25

Rocchio Time Complexity

- Note: The time to add two sparse vectors is proportional to minimum number of non-zero entries in the two vectors.
- Training Time: $O(|D|(L_d + |V_d|)) = O(|D| L_d)$ where L_d is the average length of a document in D and V_d is the average vocabulary size for a document in D.
- Test Time: $O(L_t + |C|/|V_t|)$ where L_t is the average length of a test document and $|V_t|$ is the average vocabulary size for a test document.
 - Assumes lengths of p_i vectors are computed and stored during training, allowing cosSim(d, p_i) to be computed in time proportional to the number of non-zero entries in d (i.e. /V_i)

200

Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in *D*.
- Testing instance *x*:
 - Compute similarity between x and all examples in D.
 - Assign x the category of the most similar example in D.
- Does not explicitly compute a generalization or category prototypes.
- · Also called:
 - Case-based
 - Memory-based
 - Lazy learning

27

K Nearest-Neighbor

- Using only the closest example to determine categorization is subject to errors due to:
 - A single atypical example.
 - Noise (i.e. error) in the category label of a single training example.
- More robust alternative is to find the k most-similar examples and return the majority category of these k examples.
- Value of *k* is typically odd to avoid ties, 3 and 5 are most common.

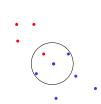
20

Similarity Metrics

- Nearest neighbor method depends on a similarity (or distance) metric.
- Simplest for continuous *m*-dimensional instance space is *Euclidian distance*.
- Simplest for m-dimensional binary instance space is Hamming distance (number of feature values that differ).
- For text, cosine similarity of TF-IDF weighted vectors is typically most effective.

29

3 Nearest Neighbor Illustration (Euclidian Distance)



K Nearest Neighbor for Text

Training:

For each each training example $\langle x, c(x) \rangle \in D$ Compute the corresponding TF-IDF vector, $\mathbf{d}_{\mathbf{r}}$, for document x

Test instance y:

Compute TF-IDF vector d for document y

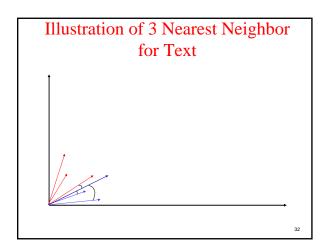
For each $\langle x, c(x) \rangle \in D$

Let $s_x = \cos \operatorname{Sim}(\mathbf{d}, \mathbf{d}_x)$

Sort examples, x, in D by decreasing value of s_x

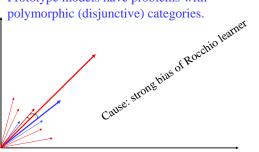
Let *N* be the first *k* examples in D. (*get most similar neighbors*)

Return the majority class of examples in N



Rocchio Anomaly

• Prototype models have problems with



3 Nearest Neighbor Comparison

• Nearest Neighbor tends to handle polymorphic categories better.

Nearest Neighbor Time Complexity

- Training Time: $O(|D| L_d)$ to compose TF-IDF vectors.
- Testing Time: $O(L_t + |D|/V_t)$ to compare to all training vectors.
 - Assumes lengths of \mathbf{d}_x vectors are computed and stored during training, allowing $cosSim(\mathbf{d}, \mathbf{d}_{x})$ to be computed in time proportional to the number of non-zero entries in **d** (i.e. $/V_t/$)
- Testing time can be high for large training

Determining *k* nearest neighbors is the same as determining the *k* best retrievals using the test document as a query to a database of training

Nearest Neighbor

with Inverted Index

- · Use standard VSR inverted index methods to find the k nearest neighbors.
- Testing Time: $O(B/V_t/)$ where B is the average number of training documents in which a test-document word appears.
- Therefore, overall classification is $O(L_t + B/V_t/)$ - Typically $B \ll |D|$

Bayesian Methods

- Learning and classification methods based on probability theory.
 - Bayes theorem plays a critical role in probabilistic learning and classification.
 - Uses *prior* probability of each category given no information about an item.
- Categorization produces a *posterior* probability distribution over the possible categories given a description of an item.

37

Axioms of Probability Theory

• All probabilities between 0 and 1

$$0 \le P(A) \le 1$$

• True proposition has probability 1, False has probability 0.

$$P(true) = 1$$
 $P(false) = 0$.

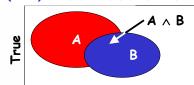
• The probability of disjunction is: $P(A \lor B) = P(A) + P(B) - P(A \land B)$

20

Probability: Simple & logical

The definitions imply that certain logically related events must have related probabilities

E.g. $P(A \lor B) = P(A) + P(B) - P(A \land B)$



de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

39

Conditional Probability

- $P(A \mid B)$ is the probability of A given B
- Assumes that *B* is all and only information known.
- Defined by:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

40

Independence

• *A* and *B* are *independent* iff:

P(A | B) = P(A)These two constraints are logically equivalent P(B | A) = P(B)

• Therefore, if *A* and *B* are independent:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = P(A)$$

$$P(A \wedge B) = P(A)P(B)$$

41

Bayes Theorem

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Simple proof from definition of conditional probability:

$$P(H \mid E) = \frac{P(H \land E)}{P(E)}$$

(Def. cond. prob.)

$$P(E \mid H) = \frac{P(H \land E)}{P(H)}$$

(Def. cond. prob.)

$$P(H \wedge E) = P(E \mid H)P(H)$$

(Mult both sides of 2 by P(H).)

QED:
$$P(H | E) = \frac{P(E | H)P(H)}{P(E)}$$

(Replace 3 in 1.)

Bayesian Categorization

- Let set of categories be $\{c_1, c_2, ... c_n\}$
- Let *E* be description of an instance.
- Determine category of *E* by determining for each c_i $P(c_i | E) = \frac{P(c_i)P(E | c_i)}{P(E)}$
- P(E) can be determined since categories are complete and disjoint.

$$\sum_{i=1}^{n} P(c_i \mid E) = \sum_{i=1}^{n} \frac{P(c_i)P(E \mid c_i)}{P(E)} = 1$$

$$P(E) = \sum_{i=1}^{n} P(c_i) P(E \mid c_i)$$

43

Bayesian Categorization (cont.)

- Need to know:
 - Priors: $P(c_i)$
 - Conditionals: $P(E \mid c_i)$
- $P(c_i)$ are easily estimated from data.
 - If n_i of the examples in D are in c_i , then $P(c_i) = n_i / |D|$
- Assume instance is a conjunction of binary features:

$$E = e_1 \wedge e_2 \wedge \cdots \wedge e_m$$

• Too many possible instances (exponential in m) to estimate all $P(E \mid c_i)$

14

Naïve Bayesian Categorization

 If we assume features of an instance are independent given the category (c_i) (conditionally independent).

$$P(E \mid c_i) = P(e_1 \land e_2 \land \dots \land e_m \mid c_i) = \prod_{i=1}^m P(e_i \mid c_i)$$

• Therefore, we then only need to know $P(e_i | c_j)$ for each feature and category.

45

Naïve Bayes Example

- C = {allergy, cold, well}
- e_1 = sneeze; e_2 = cough; e_3 = fever
- $E = \{\text{sneeze, cough, } \neg \text{fever}\}$

Prob	Well	Cold	Allergy
$P(c_i)$	0.9	0.05	0.05
$P(\text{sneeze} c_i)$	0.1	0.9	0.9
$P(\text{cough} c_i)$	0.1	0.8	0.7
$P(\text{fever} c_i)$	0.01	0.7	0.4

46

Naïve Bayes Example (cont.)

Probability	Well	Cold	Allergy
$P(c_i)$	0.9	0.05	0.05
P(sneeze $ c_i $	0.1	0.9	0.9
$P(\text{cough} \mid c_i)$	0.1	0.8	0.7
P(fover c)	0.01	0.7	0.4

E={sneeze, cough, ¬fever}

$$\begin{split} &P(well \mid E) = (0.9)(0.1)(0.1)(0.99)/P(E) = 0.0089/P(E) \\ &P(cold \mid E) = (0.05)(0.9)(0.8)(0.3)/P(E) = 0.01/P(E) \\ &P(allergy \mid E) = (0.05)(0.9)(0.7)(0.6)/P(E) = 0.019/P(E) \end{split}$$

Most probable category: allergy P(E) = 0.089 + 0.01 + 0.019 = 0.0379

P(well | E) = 0.23 P(cold | E) = 0.26

 $P(\text{allergy} \mid E) = 0.50$

Estimating Probabilities

- Normally, probabilities are estimated based on observed frequencies in the training data.
- If D contains n_i examples in category c_i, and n_{ij} of these n_i examples contains feature e_i, then:

$$P(e_j \mid c_i) = \frac{n_{ij}}{n_i}$$

- However, estimating such probabilities from small training sets is error-prone.
- If due only to chance, a rare feature, e_k , is always false in the training data, $\forall c_i : P(e_k \mid c_i) = 0$.
- If e_k then occurs in a test example, E, the result is that $\forall c_i$: $P(E \mid c_i) = 0$ and $\forall c_i$: $P(c_i \mid E) = 0$

Smoothing

- To account for estimation from small samples, probability estimates are adjusted or smoothed.
- Laplace smoothing using an *m*-estimate assumes that
 each feature is given a prior probability, *p*, that is
 assumed to have been previously observed in a
 "virtual" sample of size *m*.

$$P(e_j \mid c_i) = \frac{n_{ij} + mp}{n_i + m}$$

• For binary features, *p* is simply assumed to be 0.5.

49

Naïve Bayes for Text

- Modeled as generating a bag of words for a document in a given category by repeatedly sampling with replacement from a vocabulary $V = \{w_1, w_2, ..., w_m\}$ based on the probabilities $P(w_i | c_i)$.
- Smooth probability estimates with Laplace m-estimates assuming a uniform distribution over all words (p = 1/|V|) and m = |V|
 - Equivalent to a virtual sample of seeing each word in each category exactly once.

50

Text Naïve Bayes Algorithm (Train)

Let V be the vocabulary of all words in the documents in D For each category $c_i \in C$

Let D_i be the subset of documents in D in category c_i $P(c_i) = |D_i| / |D|$

Let T_i be the concatenation of all the documents in D_i Let n_i be the total number of word occurrences in T_i For each word $w_i \in V$

Let n_{ij} be the number of occurrences of w_j in T_i Let $P(w_i | c_i) = (n_{ii} + 1) / (n_i + |V|)$

51

Text Naïve Bayes Algorithm (Test)

Given a test document *X* Let *n* be the number of word occurrences in *X* Return the category:

$$\underset{c_{i} \in \mathcal{C}}{\operatorname{argmax}} P(c_{i}) \prod_{i=1}^{n} P(a_{i} \mid c_{i})$$
 where a_{i} is the word occurring the *i*th position in X

52

Naïve Bayes Time Complexity

- Training Time: $O(|D|L_d + |C||V|))$ where L_d is the average length of a document in D.
 - Assumes V and all D_i , n_i , and n_{ij} pre-computed in $O(|D|L_d)$ time during one pass through all of the data.
 - Generally just $O(|D|L_d)$ since usually $|C||V| < |D|L_d$
- Test Time: $O(/C/L_t)$
 - where L_t is the average length of a test document.
- Very efficient overall, linearly proportional to the time needed to just read in all the data.
- · Similar to Rocchio time complexity.

53

Underflow Prevention

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes (the class with maximum posterior probability) are usually fairly accurate.
- However, due to the inadequacy of the conditional independence assumption, the actual posterior-probability numerical estimates are *not* accurate.
 - Output probabilities are generally very close to 0 or

55

Evaluating Categorization

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
- *Classification accuracy*: c/n where n is the total number of test instances and c is the number of test instances correctly classified by the system.
- Results can vary based on sampling error due to different training and test sets.
- Average results over multiple training and test sets (splits of the overall data) for the best results.

56

N-Fold Cross-Validation

- Ideally, test and training sets are independent on each trial.
 - But this would require too much labeled data.
- Partition data into N equal-sized disjoint segments.
- Run N trials, each time using a different segment of the data for testing, and training on the remaining N-1 segments.
- This way, at least test-sets are independent.
- Report average classification accuracy over the N trials.
- Typically, N = 10.

57

Learning Curves

- In practice, labeled data is usually rare and expensive.
- Would like to know how performance varies with the number of training instances.
- *Learning curves* plot classification accuracy on independent test data (*Y* axis) versus number of training examples (*X* axis).

58

N-Fold Learning Curves

- Want learning curves averaged over multiple trials.
- Use *N*-fold cross validation to generate *N* full training and test sets.
- For each trial, train on increasing fractions of the training set, measuring accuracy on the test data for each point on the desired learning curve.

59

Sample Learning Curve (Yahoo Science Data) NaiveBayes: 10-fold CV Learning Curve 0.62 0.6 0.54 0.52 0.50 0.50 Size of training set