
1

All About Nutch

Michael J. Cafarella
CSE 454

April 14, 2005

Meta-details
Built to encourage public search work

Open-source, w/pluggable modules
Cheap to run, both machines & admins

Goal: Search more pages, with better
quality, than any other engine

Pretty good ranking
Currently can do ~ 200M pages

Outline
Nutch design

Link database, fetcher, indexer, etc…

Supporting parts
Distributed filesystem, job control

Nutch for your project

WebDB

Fetcher 2 of N
Fetcher 1 of N

Fetcher 0 of N

Fetchlist 2 of N
Fetchlist 1 of N

Fetchlist 0 of N
Update 2 of NUpdate 1 of NUpdate 0 of N

Content 0 of NContent 0 of NContent 0 of N

Indexer 2 of N
Indexer 1 of N

Indexer 0 of N

Searcher 2 of N
Searcher 1 of N

Searcher 0 of N

WebServer 2 of M
WebServer 1 of M

WebServer 0 of M

Index 2 of NIndex 1 of NIndex 0 of N

Inject

Moving Parts
Acquisition cycle

WebDB
Fetcher

Index generation
Indexing
Link analysis (maybe)

Serving results

WebDB

Contains info on all pages, links
URL, last download, # failures, link score,
content hash, ref counting
Source hash, target URL

Must always be consistent
Designed to minimize disk seeks

19ms seek time x 200m new pages/mo
= ~44 days of disk seeks!

2

Fetcher
Fetcher is very stupid. Not a “crawler”
Divide “to-fetch list” into k pieces, one
for each fetcher machine
URLs for one domain go to same list,
otherwise random

“Politeness” w/o inter-fetcher protocols
Can observe robots.txt similarly
Better DNS, robots caching
Easy parallelism

Two outputs: pages, WebDB edits 2. Sort edits (externally, if necessary)

WebDB/Fetcher Updates

ContentHash: None

LastUpdated: Never

URL: http://www.flickr/com/index.html

ContentHash: None

LastUpdated: Never

URL: http://www.cnn.com/index.html

ContentHash: MD5_toewkekqmekkalekaa

LastUpdated: 4/07/05

URL: http://www.yahoo/index.html

ContentHash: MD5_sdflkjweroiwelksd

LastUpdated: 3/22/05

URL: http://www.cs.washington.edu/index.html

ContentHash: MD5_balboglerropewolefbag

URL: http://www.cnn.com/index.html

Edit: DOWNLOAD_CONTENT

ContentHash: MD5_toewkekqmekkalekaa

URL: http://www.yahoo/index.html

Edit: DOWNLOAD_CONTENT

ContentHash: None

URL: http://www.flickr.com/index.html

Edit: NEW_LINK

WebDB Fetcher edits

1. Write down fetcher edits3. Read streams in parallel, emitting new database4. Repeat for other tables

ContentHash: MD5_balboglerropewolefbag

LastUpdated: Today!

URL: http://www.cnn.com/index.html

ContentHash: MD5_toewkekqmekkalekaa

LastUpdated: Today!

URL: http://www.yahoo.com/index.html

Indexing
Iterate through all k page sets in parallel,
constructing inverted index
Creates a “searchable document” of:

URL text
Content text
Incoming anchor text

Other content types might have a different
document fields

Eg, email has sender/receiver
Any searchable field end-user will want

Uses Lucene text indexer

Link analysis
A page’s relevance depends on both
intrinsic and extrinsic factors

Intrinsic: page title, URL, text
Extrinsic: anchor text, link graph

PageRank is most famous of many
Others include:

HITS
Simple incoming link count

Link analysis is sexy, but importance
generally overstated

Link analysis (2)
Nutch performs analysis in WebDB

Emit a score for each known page
At index time, incorporate score into
inverted index

Extremely time-consuming
In our case, disk-consuming, too (because
we want to use low-memory machines)

0.5 * log(# incoming links)

“britney”

Query Processing

Docs 0-1M Docs 1-2M Docs 2-3M Docs 3-4M Docs 4-5M

“britney”
“britney” “b

rit
ne

y”

“britn
ey”

“britney”Ds 1, 29

Ds 1.2M, 1.7M

D
s 2.3M

, 2.9M Ds 3
.1M

, 3
.2M

Ds 4.4M, 4.5M

1.2M
, 4.4M

, 29, …

3

Administering Nutch
Admin costs are critical

It’s a hassle when you have 25 machines
Google has maybe >100k

Files
WebDB content, working files
Fetchlists, fetched pages
Link analysis outputs, working files
Inverted indices

Jobs
Emit fetchlists, fetch, update WebDB
Run link analysis
Build inverted indices

Administering Nutch (2)
Admin sounds boring, but it’s not!

Really
I swear

Large-file maintenance
Google File System (Ghemawat, Gobioff,
Leung)
Nutch Distributed File System

Job Control
Map/Reduce (Dean and Ghemawat)

Nutch Distributed File System
Similar, but not identical, to GFS
Requirements are fairly strange

Extremely large files
Most files read once, from start to end
Low admin costs per GB

Equally strange design
Write-once, with delete
Single file can exist across many machines
Wholly automatic failure recovery

NDFS (2)
Data divided into blocks
Blocks can be copied, replicated
Datanodes hold and serve blocks
Namenode holds metainfo

Filename block list
Block datanode-location

Datanodes report in to namenode every
few seconds,

NDFS File Read

Namenode

Datanode 0 Datanode 1 Datanode 2

Datanode 3 Datanode 4 Datanode 5

1. Client asks datanode for filename info
2. Namenode responds with blocklist, and

location(s) for each block
3. Client fetches each block, in sequence, from

a datanode

“crawl.txt”(block-33 / datanodes 1, 4)
(block-95 / datanodes 0, 2)
(block-65 / datanodes 1, 4, 5)

NDFS Replication

Namenode

Datanode 0
(33, 95)

Datanode 1
(46, 95)

Datanode 2
(33, 104)

Datanode 3
(21, 33, 46)

Datanode 4
(90)

Datanode 5
(21, 90, 104)

1. Always keep at least k copies of each blk
2. Imagine datanode 4 dies; blk 90 lost
3. Namenode loses heartbeat, decrements blk

90’s reference count. Asks datanode 5 to
replicate blk 90 to datanode 0

4. Choosing replication target is tricky

(Blk 90 to dn 0)

4

Map/Reduce
Map/Reduce is programming model
from Lisp (and other places)

Easy to distribute across nodes
Nice retry/failure semantics

map(key, val) is run on each item in set
emits key/val pairs

reduce(key, vals) is run for each unique
key emitted by map()

emits final output
Many problems can be phrased this way

Map/Reduce (2)
Task: count words in docs

Input consists of (url, contents) pairs
map(key=url, val=contents):

For each word w in contents, emit (w, “1”)

reduce(key=word, values=uniq_counts):
Sum all “1”s in values list
Emit result “(word, sum)”

Map/Reduce (3)
Task: grep

Input consists of (url+offset, single line)
map(key=url+offset, val=line):

If contents matches regexp, emit (line, “1”)

reduce(key=line, values=uniq_counts):
Don’t do anything; just emit line

We can also do graph inversion, link
analysis, WebDB updates, etc

Map/Reduce (4)
How is this distributed?

1. Partition input key/value pairs into
chunks, run map() tasks in parallel

2. After all map()s are complete, consolidate
all emitted values for each unique
emitted key

3. Now partition space of output map keys,
and run reduce() in parallel

If map() or reduce() fails, reexecute!

Map/Reduce Job Processing

JobTracker

TaskTracker 0 TaskTracker 1 TaskTracker 2

TaskTracker 3 TaskTracker 4 TaskTracker 5

1. Client submits “grep” job, indicating code
and input files

2. JobTracker breaks input file into k chunks,
(in this case 6). Assigns work to ttrackers.

3. After map(), tasktrackers exchange map-
output to build reduce() keyspace

4. JobTracker breaks reduce() keyspace into
m chunks (in this case 6). Assigns work.

5. reduce() output may go to NDFS

“grep”

Searching webcams
Index size will be small
Need all the hints you can get

Page text, anchor text
URL sources like Yahoo or DMOZ entries
Webcam-only content types
Avoid processing images at query time

Take a look at Nutch pluggable content
types (current examples include PDF,
MS Word, etc.). Might work.

5

Searching webcams (2)
Annotate Lucene document with new
fields

“Image qualities” might contain “indoors”
or “daylight” or “flesh tones”
Parse text for city names to fill “location”
field
Multiple downloads to compute “lattitude”
field
Others?

Will require new search procedure, too

Conclusion
http://www.nutch.org/

Partial documentation
Source code
Developer discussion board

“Lucene in Action” by Hatcher,
Gospodnetic (you can borrow mine)
Questions?

