All About Nutch

Michael J. Cafarella
CSE 454
April 14, 2005

,_:’ Meta-details w

= Built to encourage public search work
= Open-source, w/pluggable modules
= Cheap to run, both machines & admins
= Goal: Search more pages, with better
quality, than any other engine
= Pretty good ranking
= Currently can do ~ 200M pages

Advertising Programs - Business Solutions - About Google

‘ ©2005 Foogle - Searching 8,058.094.651 web pages)

Outline

= Nutch design

= Link database, fetcher, indexer, etc...
= Supporting parts

= Distributed filesystem, job control
= Nutch for your project

Fetcher 0 of N

r 0 of N|

WebServer 0 of Mi

T,

Moving Parts

= Acquisition cycle

= WebDB

= Fetcher
= Index generation

= Indexing

= Link analysis (maybe)
= Serving results

WebDB

= Contains info on all pages, links

= URL, last download, # failures, link score,
content hash, ref counting

= Source hash, target URL
= Must always be consistent
= Designed to minimize disk seeks
= 19ms seek time x 200m new pages/mo
= ~44 days of disk seeks!

Fetcher

= Fetcher is very stupid. Not a “crawler”
= Divide “to-fetch list” into & pieces, one
for each fetcher machine
= URLs for one domain go to same list,
otherwise random
= “Politeness” w/o inter-fetcher protocols
= Can observe robots.txt similarly
= Better DNS, robots caching
= Easy parallelism
= Two outputs: pages, WebDB edits

g WebDB/Fetcher Updates

URL: http://www.cs.washington.edu/index.htm! Edit: DOWNLOAD_CONTENT

LastUpdated: 3/22/05 URL: http://www.yahoo/index.html

ContentHash: MD5_sdflkjweroiwelksd ContentHash: MD5_toewkekgmekkalekaa

URL: http://www.cnn.com/index.html Edit: DOWNLOAD_CONTENT

LastUpdated: Wesay! URL: http://www.cnn.com/index.html

ContentHash: M@ balboglerropewolefbag ContentHash: MD5_balboglerropewolefbag

URL: http://www. Edit: NEW_LINK

LastUpdated: M&105 URL: http://www.flickr.com/index.html

ContentHash: M@ toewkekgmekkalekaa ContentHash: None

URL: http://www.yahoo.com/index.html

LastUpdated: Todde0DB Fetcher edits

ContentHash: MD5_toewkekqmekkalekaa

@i miiEidoecetsag/hew database

Indexing

= |terate through all k< page sets in parallel,
constructing inverted index
= Creates a “searchable document” of:
= URL text
= Content text
= Incoming anchor text
= Other content types might have a different
document fields
= Eg, email has sender/receiver
= Any searchable field end-user will want
= Uses Lucene text indexer

Link analysis

= A page’s relevance depends on both
intrinsic and extrinsic factors
= Intrinsic: page title, URL, text
= Extrinsic: anchor text, link graph

= PageRank is most famous of many

= Others include:
= HITS
= Simple incoming link count

= Link analysis is sexy, but importance
generally overstated

Link analysis (2)

= Nutch performs analysis in WebDB
= Emit a score for each known page

= At index time, incorporate score into
inverted index

= Extremely time-consuming

= In our case, disk-consuming, too (because
we want to use low-memory machines)

= 0.5 * log(# incoming links)

Query Processing

Docs 0-1M Docs 1-2M Docs 2-3M Docs 3-4M Docs 4-5M

oooo

=
S
= g
2 E
S

@
= <
N
8

]

—

Administering Nutch

= Admin costs are critical
= It's a hassle when you have 25 machines
= Google has maybe >100k
= Files
= WebDB content, working files
= Fetchlists, fetched pages
= Link analysis outputs, working files
= Inverted indices
= Jobs
= Emit fetchlists, fetch, update WebDB
= Run link analysis
= Build inverted indices

Administering Nutch (2)

= Admin sounds boring, but it's not!
= Really
= | swear

= Large-file maintenance

= Google File System (Ghemawat, Gobioff,
Leung)

= Nutch Distributed File System
= Job Control
= Map/Reduce (Dean and Ghemawat)

Nutch Distributed File System

= Similar, but not identical, to GFS
= Requirements are fairly strange
= Extremely large files
= Most files read once, from start to end
= Low admin costs per GB
= Equally strange design
= Write-once, with delete
= Single file can exist across many machines
= Wholly automatic failure recovery

NDFS (2)

= Data divided into blocks

= Blocks can be copied, replicated

= Datanodes hold and serve blocks

= Namenode holds metainfo
= Filename - block list
= Block = datanode-location

= Datanodes report in to namenode every
few seconds,

NDFS File Read

R [[[
Datanode 0 Datanode 1 Datanode 2

Namenode

Datanode 4 Datanode 5

. Client asks datanode for filename info
2. Namenode responds with blocklist, and
location(s) for each block
3. Client fetches each block, in sequence, from
a datanode

NDFS Replication

— [

(Bik Datanode 0 ode 1 Datanode 2
90todn o (33, 95) (46, 9 (33, 104)
Namenode \)\@\‘
Datanode 3 Datanode 4 Datanode 5
(21, 33, 46) (90) (21, 90, 104)

-

. Always keep at least & copies of each blk
2. Imagine datanode 4 dies; blk 90 lost
3. Namenode loses heartbeat, decrements blk
E 90's reference count. Asks datanode 5 to
replicate blk 90 to datanode 0

[=] 4. Choosing replication target is tricky

Map/Reduce

= Map/Reduce is programming model
from Lisp (and other places)
= Easy to distribute across nodes
= Nice retry/failure semantics

= map(key, val) is run on each item in set
= emits key/val pairs

= reduce(key, vals) is run for each unique
key emitted by map()
= emits final output

= Many problems can be phrased this way

Map/Reduce (2)

= Task: count words in docs
= Input consists of (url, contents) pairs
= map(key=url, val=contents):
= For each word win contents, emit (w, “1”)
= reduce(key=word, values=unig_counts):
= Sum all “1”s in values list
= Emit result “(word, sum)”

Map/Reduce (3)

= Task: grep
= Input consists of (url+offset, single line)
= map(key=url+offset, val=line):
= If contents matches regexp, emit (line, “1”)
= reduce(key=line, values=unig_counts):
= Don't do anything; just emit line
= We can also do graph inversion, link
analysis, WebDB updates, etc

Map/Reduce (4)

= How is this distributed?

1. Partition input key/value pairs into
chunks, run map() tasks in parallel

2. After all map()s are complete, consolidate
all emitted values for each unique
emitted key

s Now partition space of output map keys,
and run reduce() in parallel

= If map() or reduce() fails, reexecute!

Map/Reduce Job Processing

TaskTracker 3 TaskTracker 4 — TaskTracker 5

“grep”

1. Client submits “grep” job, indicating code
and input files
2. JobTracker breaks input file into & chunks,
(in this case 6). Assigns work to ttrackers.
3. After map(), tasktrackers exchange map-
output to build reduce() keyspace
E 4. JobTracker breaks reduce() keyspace into
— m chunks (in this case 6). Assigns work.
] 5. reduce() output may go to NDFS

Searching webcams

= Index size will be small

= Need all the hints you can get
= Page text, anchor text
= URL sources like Yahoo or DMOZ entries
= Webcam-only content types
= Avoid processing images at query time

= Take a look at Nutch pluggable content
types (current examples include PDF,
MS Word, etc.). Might work.

Searching webcams (2)

= Annotate Lucene document with new
fields

= “Image qualities” might contain “indoors”
or “daylight” or “flesh tones”

= Parse text for city names to fill “location”
field

= Multiple downloads to compute “lattitude”
field

= Others?
= Will require new search procedure, too

Conclusion

= http://www.nutch.org/
= Partial documentation
= Source code
= Developer discussion board
= “Lucene in Action” by Hatcher,
Gospodnetic (you can borrow mine)
= Questions?

