CSE 454

Inverted Indicies
(with Compression & LSI)

41712005 1:35 PM Copyright © Kambhampati / Weld 2002 1

H tl
Review 0

Precision & Recall metrics
Vector Space Representation

— Dot Product as Similarity Metric
TF-1DF for Computing Weights
- w; = f(i,j)* log(N/ni)

terms

But How Process Efficiently? documents

41712005 1:35 PM Copyright © Kambhampati / Weld 2002 2

Today’s Class

Efficient query processing
— Inverted indicies (creation & query processing)
— Compression

Latent Semantic Indexing (LSI)

4/712005 1:35 PM Copyright © Kambhampati / Weld 2002 3

Course Overview

Info Extraction Ecommerce

Web Services

P2P | security |Semantic Web

Datamining

Case Studies: Butch, Google, Altavista

Information Retrieval
Precision vs Recall

Crawler Architecture

Inverted Indicies Synchronization & Monitors

Systems Foundation: Networking & Clusters

4/712005 1:35 PM Copyright © Kambhampati / Weld 2002 4

Standard Web Search Engine Architecture

store documents,
check for duplicates, -

extract links

|

create an
inverted
index

\ Search

PEr T L L . inverted
e show results engine —
—n To user
p servers,

P

im— —

41712005 1:35 PM CopyrightSHidsarhpaafesiv Wafty BA2st / UC Berkeley] 5

Search Engine Components

Spider
— Getting the pages

Indexing
— Storing (e.g. in an inverted file)

Query Processing

—Booleans, ...

Ranking

— Vector space model, PageRank, anchor text analysis
Summaries

Refinement

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 6

Efficient Retrieval

e Document-term matrix

toL ot nf

d; Wy Wip oo Wy oo Wy I7[d]
d, Wy Wy oo Wy oo Wy, 1/]dy|
dl Wip Wi ... WI] coo Wip llldll
Ay [Wop Wop oo Wy oo W 1dy|

s wj is the weight of term t; in document d;
* Most w;’s will be zero.

4/7/2005 1:35 PM

Copyright © Kambhampati / Weld 2002

Naive retrieval

Consider query q = (qy, 0, ..., iy - q,), nf=1/q|.

How to evaluate q (i.e., compute the similarity between g and every

document)?
Method 1: Compare g with every document directly.
e document data structure:
di 2 ((ty, Wip), (G, W), - - (G W), -y (g Wipn), 1/1d)
— Only terms with positive weights are kept.
— Terms are in alphabetic order.
e query data structure:

q: ((t A (b A2 - - (G), - -) (b A), al)

41712005 1:35 PM Copyright © Kambhampati / Weld 2002

Naive retrieval

Method 1: Compare q with documents directly (cont.)

initialize all sim(q, d;) = 0;
for each document di (i=1, ..., n)
{foreachterm¢t (=1, ..., m)
if t; appears in both g and d;
sim(g, d;) += g; *wy;
sim(g, d)) = sim(q, d;) *(U/lq) *(1/|d); }
sort documents in descending similarities and
display the top k to the user;

4/712005 1:35 PM Copyright © Kambhampati / Weld 2002

Observation

Method 1 is not efficient

- Needs to access most non-zero entries in doc-term matrix.
Solution: Inverted Index

- Data structure to permit fast searching.
Like an Index in the back of a text book.

- Key words --- page numbers.

- E.g, “Etzioni, 40, 55, 60-63, 89, 220"

- Lexicon

- Occurrences

4/7/2005 1:35 PM

Copyright © Kambhampati / Weld 2002 10

Search Processing (Overview)

Lexicon search

— E.g. looking in index to find entry
Retrieval of occurrences

— Seeing where term occurs
Manipulation of occurrences
— Going to the right page

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002

Inverted Files

A file is a list of words by position

10 Firstentry is the word in position 1 (first word

2 Entry 4562 is the word in position 4562 (4562™ word)
% Last entry is the last word

3% Aninverted file is a list of positions by word!

FILE

a (1, 4, 40)
entry (11, 20, 31)

e
list (5, 41)

position (9, 16,26) _—"|
positions (44)

word (14, 19, 24, 29, 35, 45)
words (7)

4562 (21, 27)

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 12

Inverted Files for Multiple Documents

“jezebel” occurs

LEXICON | DOCID OCCUR POS1 POS2 ... g:lmﬂs"‘ gﬂcumﬂ":z-
imes in document 44,
Woro TNooCS PTR | 4times in document 56
“ezebel 20] [3a] 6] 1] 118] 2087 3922] 3981] 5002]
J.eze © /r 44] 3] 215] 2291 3010]
Jezer 3 56] 4] 5] 22| 134] 992]
jezerit 1
jeziah 1 [e6] 3] 203] 245] 287]
jeziel 1
e : | OCCURENCE
jezoar 1 | . INDEX
jezrahliah 1 |
jezreel 39 | —— [[107] 4] 322] 354] 381] 405
| 232 6 15| 195| 248 1897| 1951] 2192
677 1| 481
I 7133 42| 312] 802]

* One method. Alta Vista uses alternative

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 13

Many Variations Possible

Address space (flat, hierarchical)
Position

TF /IDF info precalculated
Header, font, tag info stored
Compression strategies

41712005 1:35 PM Copyright © Kambhampati / Weld 2002 14

Using Inverted Files

Several data structures:
1. For each term t;, create a list (inverted file list) that
contains all document ids that have t;.
1) = { (dy, wyp), (dgy W), ..o, (diy W), -, (dyy W) }
- dis the document id number of the ith document.
- Weights come from freq of term in doc
— Only entries with non-zero weights should be kept.

4/712005 1:35 PM Copyright © Kambhampati / Weld 2002 15

Inverted files continued

More data structures:

2. Normalization factors of documents are pre-
computed and stored in an array: nffi] stores 1/|dj|.

3. Lexicon: a hash table for all terms in the collection.

— Inverted file lists are typically stored on disk.
— The number of distinct terms is usually very large.

4/712005 1:35 PM Copyright © Kambhampati / Weld 2002 16

Retrieval using Inverted files

initialize all sim(q, d;) =0;
for each term t;inq
{ find I(t) using the hash table;
for each (d;, wy) in I(t)
sim(g, d;) += q; *wy; }

for each document di

sim(q, d;) = sim(g, d;) * nf[il;
sort documents in descending similarities and

display the top k to the user;

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 17

Observations about Method 2

If a document d does not contain any term of a given
query q, then d will not be involved in the evaluation
of g.

Only non-zero entries in the columns in the
document-term matrix corresponding to the query
terms are used to evaluate the query.

Computes the similarities of multiple documents
simultaneously (w.r.t. each query word)

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 18

Efficient Retrieval

Example (Method 2): Suppose

q={(t1, 1), (t3,1) }, 1//g|=0.7071
d1={(tL, 2), (&2, 1), (t3, 1) }, nf[1] = 0.4082
d2={ (12, 2), (t3, 1), (t4, 1) }, nf[2] = 0.4082
d3={(tL, 1), (t3, 1), (t4, 1) }, nf[3] = 0.5774
da={ (11, 2), (t2, 1), (13, 2), (t4, 2) }, nf[4] = 0.2774
d5 = { (12, 2), (t4, 1), (t5, 2) }, nf[5] = 0.3333
I(t1) = { (d1, 2), (d3, 1), (d4,2) }

I(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5,2) }
I(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4,2) }
I(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5, 1) }
I(t5) = { (d5,2) }

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 19

4= LD @ D] Ll =07071 Efficient Retrieval
dl={(tL, 2), (2, 1), (83, 1) }. nf[1] = 0.4082

d2={ (2, 2), (t3, 1), (t4, 1) }, nf[2] = 0.4082

d3={ (tL, 1), (83, 1), (t4. 1) }. nf[3] = 0.5774

d4={(t1, 2), (t2, 1), (t3, 2), (t4, 2) }, nf[4] = 0.2774

d5={ (t2, 2). (t4, 1), (t5, 2) }, nf[5] = 0.3333

I(t1) = { (d1, 2), (d3, 1), (d4,2) } After t1 is processed:

1(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5, 2) } sim(q, d1) =2, sim(q, d2) =0,
1(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4, 2) } sim(q, d3) =1
1(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5,1) } sim(q, d4) =2, sim(q, d5) =0
1(t5) = { (d5, 2) } After t3 is processed:
sim(g, d1) =3, sim(q,d2)=1,
sim(q, d3) =2
sim(q, d4) =4, sim(q,d5)=0
After normalization:
sim(qg, d1) =.87, sim(q, d2) =.29,
sim(q, d3) =.82
sim(q, d4) =.78, sim(q, d5) =0
4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 20

Efficiency versus Flexibility

» Storing computed document weights is good
for efficiency but bad for flexibility.
— Recomputation needed if tf and idf formulas
change and/or tf and df information change.
e Flexibility is improved by storing raw tf and df
information but efficiency suffers.
e A compromise
— Store pre-computed tf weights of documents.

— Use idf weights with query term tf weights
instead of document term tf weights.

4/712005 1:35 PM Copyright © Kambhampati / Weld 2002 21

How Inverted Files are Created

The Lexicon

e Grows Slowly (Heap’s law)
— O(nP) where n=text size; B is constant ~0.4 — 0.6
— E.g. for 1GB corpus, lexicon = 5Mb
— Can reduce with stemming (Porter algorithm)

« Store lexicon in file in lexicographic order
— Each entry points to loc in occurrence file

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 23

.) . \Q%
Term Doc# Freq DICtIonary POStIngZ\O’\\
a 2 1 (/
e L a Term Ndocs TotFreq Doc é&
al 4 L a 1 —] 1
p F— q : 1:@6 [
come 1 1 al 1 1 1 1
country 1 1 and 1 1 f ;
Intr 2 1 come 1 1
;:k - 2 1 countr 2 1 1
dark 1 2 1
h;au i i oy 1 %&‘ — 2 1
" 2 Pooo@ ——— 1 !
= 1 L 1 1% 2 fi
it 2 1 B \\ Q‘ 1 —— i a
manor 2 1 QO 1 i 2 1
—
= Pl e — =
idnight 2 ﬁ\ midnight 1 i 1 1
el 5 L AQ night 1 1% 2 1
oEn 1] 5\\ now 1 — 2 1
i 1 o 1 1
&l R ot T T 1 a1
past ot 1 By 1 — ! :
stomy \%‘9 2 1 B g — 2 4
they, © 1 2 their 1 T 1 2
2 2 time 2 2\ 2 5
o T . e — T
%\\ time 1 1] wes 1 Z\ 3 A
time: 2 1 1 2
to 1 2 7 2
vas 2 2 Copyright © Kambhampati / Weld 2002 2

 Build Trie (or hash table)

1 6 911 17 19 24 28 33 40 46 50 55 60
Thisis a text. A text has many words. Words are made from letters.

: d __made: 50

m a /

Q t Q Q\n‘
G

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 24

Memory Too Small?

1-4
/ \

3-4

1 |

e Merging

— When word is shared in two lexicons
— Concatenate occurrence lists

- O(nl1 +n2)

» Overall complexity

— O(n log(n/M)

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 25

Stemming

 Are there different index terms?
— retrieve, retrieving, retrieval, retrieved, retrieves...
e Stemming algorithm:

— (retrieve, retrieving, retrieval, retrieved, retrieves) =
retriev

— Strips prefixes of suffixes (-s, -ed, -ly, -ness)
— Morphological stemming

Stop lists

» Language-based stop list:
— words that bear little meaning
— 20-500 words

— http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
» Subject-dependent stop lists
* Removing stop words

— From document

— From query

From Peter Brusilovsky Univ Pittsburg INFSCI 2140

41712005 1:35 PM Copyright © Kambhampati / Weld 2002 26

Stemming Continued

+ Can reduce vocabulary by ~ 1/3

» C, Java, Perl versions, python, c#
www.tartarus.org/~martin/PorterStemmer

+ Criterion for removing a suffix
— Does "a document is about w1" mean the same as
— a "a document about w2"

* Problems: sand / sander & wand / wander

4/712005 1:35 PM Copyright © Kambhampati / Weld 2002 28

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 27
Compression
What Should We Compress?
— Repository
— Lexicon
— Inv Index

What properties do we want?

— Compression ratio

— Compression speed

— Decompression speed

— Memory requirements

— Pattern matching on compressed text
— Random access

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 29

Inverted File Compression

Each inverted list has the form <f, ; d,, d,, d,, .., d, >
A naive representation results in a storage overhead of (f + n) * [logN
This can also be stored as - <f;d,,d,~d,,....d; —d; ,>

Each difference is called a d-gap. Since Z(d —gaps)<N,
each pointer requires fewer than [logN| bits.

Trick is encoding since worst case

q Assume d-gap representation for the rest of the talk, unless stated
otherwise

Slides adapted from Tapas Kanungo and David Mount, Univ Maryland
41712005 1:35 PM Copyright © Kambhampati / Weld 2002 30

Text Compression

Two classes of text compression methods
e Symbolwise (or statistical) methods

— Estimate probabilities of symbols - modeling step

— Code one symbol at a time - coding step

— Use shorter code for the most likely symbol

— Usually based on either arithmetic or Huffman coding
« Dictionary methods

— Replace fragments of text with a single code word

— Typically an index to an entry in the dictionary.

« eg: Ziv-Lempel coding: replaces strings of characters with a pointer to
a previous occurrence of the string.

— No probability estimates needed
m) Symbolwise methods are more suited for coding d-gaps

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 31

Classifying d-gap Compression Methods:

» Global: each list compressed using same model

— non-parameterized: probability distribution for d-gap sizes is
predetermined.

— parameterized: probability distribution is adjusted according to
certain parameters of the collection.

¢ Local: model is adjusted according to some parameter,

like the frequency of the term

¢ By definition, local methods are parameterized.

41712005 1:35 PM Copyright © Kambhampati / Weld 2002 32

Conclusion

* Local methods best
« Parameterized global models ~ non-parameterized
— Pointers not scattered randomly in file
* In practice, best index compression algorithm is:
— Local Bernoulli method (using Golomb coding)

« Compressed inverted indices usually faster+smaller than
— Signature files
— Bitmaps

Local < Parameterized Global < Non-parameterized Global

\ Not by much

4/712005 1:35 PM Copyright © Kambhampati / Weld 2002 33

Motivating the Need for LSI

BET
altt x|

-- Relevant docs may not have the query terms
-> but may have many “related” terms
-- Irrelevant docs may have the query terms

-> but may not have any “related” terms
4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002

Terms and Docs as vectors in
“faCtorn Space In addition to doc-doc similarity,

We can compute term-term distance
Document vector

ot
abcdkfghleﬁ“\lec‘

—Bﬂé{kce g 2 i g 2 g g g 87 If terms are independent, the
;:'em 1 otolo oo o T-T similarity matrix would

be diagonal
Human 1,00 1)040] 0 00 =If it is not diagonal, we can
Computer | 0] 1| 0] 1 0} 0] 0] 0] O use the correlations to add
Response | 0] 1| 0| 0} 1} O} 0} 0] O related terms to the query
Time 0/ 1/ 0/ 0] 1) 0] 0] 0] O =But can also ask the question
EPS 1/ 0/ 1/ 0f0fof0O[O0]O “Are there independent
Survey 0/ 1/ 0/ 0]0)JO[0O/0O]1 dimensions which define the
Trees ojojofojofj1 110 space where terms & docs are
Graph 0O 0/ojojojo[1 11 vectors ?”
Minors 0] 0/ 0oojoooj11

4/7/2005 1:35 PM opyright © Kambhampati / Weld 2002 35

Latent Semantic Indexing

» Creates modified vector space
» Captures transitive co-occurrence information

— If docs A & B don’t share any words, with each other,
but both share lots of words with doc C, then A & B will
be considered similar

— Handles polysemy (adam’s apple) & synonymy
» Simulates query expansion and document
clustering (sort of)

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 36

LSI Intuition Visual Example
* Classify Fish

* The key idea is to map documents and queries — Length
into a lower dimensional space (i.e., composed — Height
of higher level concepts which are in fewer
number than the index terms)

« Retrieval in this reduced concept space might i s o
be superior to retrieval in the space of index 3 T
terms wi, geest
4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 37 41712005 1:35 PM Copyright © Kambhampati / V\wm m [y [t 140

Move Origin Reduce Dimensions

* To center of centroid
* But are these the best axes?

* What if we only consider “size”

We retain 1.75/2.00 x 100 (87.5%) =0
of the original variation. -

Thus, by discarding the yellow axis ra :
we lose only 12.5% y .t‘l'.
of the original information. - .

-

025

Better if one axis accounts for most data variation
What should we call the red axis?

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 39 4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 40

Not Always Appropriate Linear Algebra Review

* Let A be a matrix
0 » X is an Eigenvector of A if
- A*X=2X * _ X
» Ais an Eigenvalue
e Transpose:

T
-

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 41 41712005 1:35 PM Copyright © Kambhampati / Weld 2002 42

Latent Semantic Indexing Defns

e Let m be the total number of index terms
e Let n be the number of documents
e Let [Aij] be aterm-document matrix
— With m rows and n columns
— Entries = weights, wij, associated with the pair [ki,dj]
» The weights can be computed with tf-idf

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 43

Singular Value Decomposition

 Factor [Aij] matrix into 3 matrices as follows:

* (Aij) = (V) (5) (V)"
— (V) is the matrix of eigenvectors derived from (A)(A)t
— (V)tis the matrix of eigenvectors derived from (A){(A)

—(S)isan rxr diagonal matrix of singular values
e r=min(t,n) that is, the rank of (Aij)
« Singular values are the positive square roots of the eigen
values of (A)(A)! (also (A){(A))

41712005 1:35 PM Copyright © Kambhampati / Weld 2002 44

LSI in a Nutshell

Documents

Terms

PV
i

Singular Value ko ok on

Decomposition Uy D¢ Vi

(SVD):
Convert term-document V
matrix into 3 matrices Recreate Matrix:
U,Sand vV

Multiply to produce
approximate term-
document matrix.
Use new matrix to

process queries,;

Reduce Dimensionality:
Throw out low-order
rows and columns

4/712005 1:35 PM Copyright © Kambhampati / Weld 2002

Example

U ()=
03996 -0.1037 05606 -0.3717 -0.3919 -0.3482 0.1029
04180 -0.0641 04878 01566 05771 01981 -0.1094
03464 0.4422 03997 -05142 02787 00102 -0.2857
01888 0.4615 00049 -00279 -02087 04193 -0.6629
03602 03776 -0.0914 0159 -02045 -03701 -0.1023
term ch2 |ch3 |ch4 |ch5 |ch6 |ch7 |ch8 |ch9 | ouo7s 03622 -03657 -0.2684 -0.0174 02711 05676
02750 01667 -0.1303 04376 03844 -0.3066 0.1230

controllability |1 |1 0 o |1 |o o |1 02259 03096 03579 03127 02406 03122 02611
02058 04232 0.0277 04305 03800 05114 0.2010
observabilty (1 |0 0 0 |1 |1 o |1
seun=
realizaion |1 |0 1 0 |1 |o |1 o T o o 0 0 o
0208 0 0 0 0 o0
feedback o |t o o fo |1 o o 0o owems o 0 0 o
0 o0 om2 o0 0 o
controller o 1 0o o |1 (1 |0 o o o0 o owws o o
0 0 o 0 08623 0
observer 0 1 1 0 1 1 0 0 0 0 0 0 0 0 06487
"L‘"':;ﬁ'" o o o Jo |1 |1 (0o o |[vee-
02917 02674 03883 0593 03926 02112 04505
polynomial (0 |0 o o [1 |o |1 o 03399 04811 00649 03760 05959 0.0421 0.1462
01689 00351 04562 05788 02211 0.4247 04346
matrices o (o o o |1 o |1 |1 -0.0000 00000 -0.0000 00000 00000 -0.0000 0.0000

06838 01013 01600 0.2535 00050 05220 03636
04134 05716 -0.0566 03383 04493 03198 -0.2839
02176 05151 -04369 01694 -0.2893 03161 -0.5330

This happens to be a rank-7 matrix 02791 -0.2591 06442 01593 01648 05455 02998
-so only 7 dimensions required

Singular values = Sqrt of Eigen values of AAT
4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 46

Now to Reduce Dimensions...

* In the matrix (S), select k largest singular values
+ Keep the corresponding columns in (U) and (V)
¢ The resultant matrix is called (M), and is given by

= (M) = (U), (S) (V)

— where k, k <r, is the dimensionality of the concept space
¢+ The parameter k should be

— large enough to allow fitting the characteristics of the data

- small enough to filter out the non-relevant representational
details

\C
NS s
e i’ PR ©
o

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 oN 47

Formally, this will be the rank-k (2)
matrix that is closest to M in the
! matrix norm sense

U2 (9x2) =
03996 -0.1037
04180 -0.0641
03464 -0.4422
01888 04615
03602 03776
04075 03622
02750 01667
02259 -0.3096
02958 -0.4232

s2(2x2) =
39901 0
0 22813
V2 (8x2) = T

02917 -0.2674
03399 04811
0.1889 -0.0351
-0.0000 -0.0000
06838 -0.1913
04134 05716
02176 -0.5151
02791 -0.2501

U2*S2*V2 will be a 9x8 matrix
47712005 1:35 PM Copyright © KambhampatAtVeBIar gegznates original matrix g

What should be the value of k? U,S,V,"

5 components ignored

K=2

Coordinate transformation inherent in LSI

M=USVT

Mapping of keywords into
LSI space is given by US
For k=2, the mapping is:

LSx LSy
controllability 1.5944439 -0.2365708

Mapping of a doc d=[w1....wk] into
LS| space is given by dUS

The base-keywords of
The doc are first mapped

observability 1.6678618 -0.14623132 To LSI keywords and

realization -1.0087909 Then differentially weighted
feedback 1.05: By S*

controller 1.4372339 0.86141896

observer 1.6259657 0.82628685

Transfer function 1.0972775 0.38029274

°
controllabilty

polynomial 0.90136355 -0.7062905
matrices 1.1802715 -0.96544623
41712005 1:35 PM Copyright © Kambhampati / Weld 2002 50

USVT =US,
o 2 e [ow [as [aw [ar [ow [om uU,S,v,"
by [+ (1 [0 [0 1 [0 [0 [u T T p—p—
wanaity [1 [0 [0 Jo [+ |1 [o |1 404631065 07574500 LOLTES 0 6BLZ21 0 EIO7 1062060
iz (1 [0 [1 Jo [1 [0 [1 [0 K=4 7 x
was (o s o o o i o o]
ate [0 |1 [0 [0 [+ |1 [o [0 p
w0 |1 1 [0 [1 |1 [o [0 | 3CC
e o fo Jo Jo [+ Ja o Jo ignored
sowonat [0 [0 [0 Jo [+ [0 [1 [0
s Jo [0 [0 Jo 1 [0 [1 |1
UeSeVe
One component ignored
4/712005 1:35 PM Copyright 49
143 1 T
t1= database «——
5 t2=SQL =
10 t3=index
t4=regression
t5=likelihood
8 t6=linear

from table 14.

mponents of t

Calculating Information Loss

In agreement with our intuition, most of the var

+ in the data is captured

by the first two principal comp

two p pal component:

ter

tail 1 =). has been
lost (in‘a-mean-square sense). TF we rep the documents ¢ two-

dimensional principal component s

he coefficients for each document
correspond to the first two columns of the U matrix:

Should clean this up into a
slide summarizing the info
loss formula

4/712005 1:35 PM Copyright © Kambhampati / Weld 2002 52

SVD Computation complexity

For an mxn matrix SVD computation is
— O(km2n+k’n3) complexity
* k=4 and k’=22 for best algorithms

— Approximate algorithms that exploit the sparsity of M are
available (and being developed)

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 53

What LSI can do

¢ LSI analysis effectively does
— Dimensionality reduction
— Noise reduction
— Exploitation of redundant data
— Correlation analysis and Query expansion (with related words)

¢ Any one of the individual effects can be achieved with
simpler techniques (see thesaurus construction). But LSI
does all of them together.

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 54

LSl is not the most sophisticated
dimensionality reduction technique

Dimensionality reduction is a useful technique for any
classification/regression problem

— Text retrieval can be seen as a classification problem

Many other dimensionality reduction techniques

— Neural nets, support vector machines etc.

Compared to them, LSl is limited because it’s linear

— It cannot capture non-linear dependencies between original
dimensions

- Eg. @)

4/7/2005 1:35 PM Copyright © Kambhampati / Weld 2002 55

10

