
1

Information Retrieval (IR)

Based on slides by
Prabhakar Raghavan, Hinrich Schütze,

Ray Larson

Query

Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?
Could grep all of Shakespeare’s plays for Brutus
and Caesar then strip out lines containing
Calpurnia?

Slow (for large corpora)
NOT is hard to do
Other operations (e.g., find the Romans NEAR
countrymen) not feasible

Term-document incidence

1 if play contains
word, 0 otherwise

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Incidence vectors

So we have a 0/1 vector for each term.
To answer query: take the vectors for Brutus,
Caesar and Calpurnia (complemented)
bitwise AND.
110100 AND 110111 AND 101111 = 100100.

Answers to query

Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i' the

Capitol; Brutus killed me.

Bigger corpora

Consider n = 1M documents, each with about 1K
terms.
Avg 6 bytes/term incl spaces/punctuation

6GB of data.
Say there are m = 500K distinct terms among
these.

2

Can’t build the matrix

500K x 1M matrix has half-a-trillion 0’s and 1’s.
But it has no more than one billion 1’s.

matrix is extremely sparse.
What’s a better representation?

Why?

Documents are parsed to extract words and
these are saved with the document ID.

I did enact Julius
Caesar I was killed

i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Inverted index

After all documents have
been parsed the inverted
file is sorted by terms

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Multiple term entries in
a single document are
merged and frequency
information added

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Issues with index we just built

How do we process a query?
What terms in a doc do we index?

All words or only “important” ones?
Stopword list: terms that are so common that
they’re ignored for indexing.

e.g., the, a, an, of, to …
language-specific.

Issues in what to index

Cooper’s vs. Cooper vs. Coopers.
Full-text vs. full text vs. {full, text} vs. fulltext.
Accents: résumé vs. resume.

Cooper’s concordance of Wordsworth was published in
1911. The applications of full-text retrieval are legion:
they include résumé scanning, litigation support and
searching published journals on-line.

3

Punctuation

Ne’er: use language-specific, handcrafted
“locale” to normalize.
State-of-the-art: break up hyphenated
sequence.
U.S.A. vs. USA - use locale.
a.out

Numbers

3/12/91
Mar. 12, 1991
55 B.C.
B-52
100.2.86.144

Generally, don’t index as text
Creation dates for docs

Case folding

Reduce all letters to lower case
exception: upper case in mid-sentence

e.g., General Motors
Fed vs. fed
SAIL vs. sail

Thesauri and soundex

Handle synonyms and homonyms
Hand-constructed equivalence classes

e.g., car = automobile
your you’re

Index such equivalences, or expand query?
More later ...

Spell correction

Look for all words within (say) edit distance 3
(Insert/Delete/Replace) at query time

e.g., Alanis Morisette
Spell correction is expensive and slows the query
(upto a factor of 100)

Invoke only when index returns zero matches?
What if docs contain mis-spellings?

Lemmatization

Reduce inflectional/variant forms to base form
E.g.,

am, are, is → be
car, cars, car's, cars' → car

the boy's cars are different colors → the boy car
be different color

4

Stemming

Reduce terms to their “roots” before indexing
language dependent
e.g., automate(s), automatic, automation all
reduced to automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compres and
compres are both accept
as equival to compres.

Porter’s algorithm

Commonest algorithm for stemming English
Conventions + 5 phases of reductions

phases applied sequentially
each phase consists of a set of commands
sample convention: Of the rules in a compound
command, select the one that applies to the
longest suffix.

Porter’s stemmer available:
http//www.sims.berkeley.edu/~hearst/irbook/porter.html

Typical rules in Porter

sses → ss
ies → i
ational → ate
tional → tion

Beyond term search

What about phrases?
Proximity: Find Gates NEAR Microsoft.

Need index to capture position information in
docs.

Zones in documents: Find documents with
(author = Ullman) AND (text contains automata).

Evidence accumulation

1 vs. 0 occurrence of a search term
2 vs. 1 occurrence
3 vs. 2 occurrences, etc.

Need term frequency information in docs

Ranking search results

Boolean queries give inclusion or exclusion of
docs.
Need to measure proximity from query to each
doc.
Whether docs presented to user are singletons,
or a group of docs covering various aspects of
the query.

5

Test Corpora Standard relevance benchmarks

TREC - National Institute of Standards and
Testing (NIST) has run large IR testbed for many
years
Reuters and other benchmark sets used
“Retrieval tasks” specified

sometimes as queries
Human experts mark, for each query and for
each doc, “Relevant” or “Not relevant”

or at least for subset that some system returned

Sample TREC query

Credit: Marti Hearst

Precision and recall

Precision: fraction of retrieved docs that are
relevant = P(relevant|retrieved)
Recall: fraction of relevant docs that are
retrieved = P(retrieved|relevant)

Precision P = tp/(tp + fp)
Recall R = tp/(tp + fn)

tnfnNot Retrieved

fptpRetrieved

Not RelevantRelevant

Precision & Recall

Precision

Proportion of selected
items that are correct

Recall
Proportion of target items
that were selected

Precision-Recall curve
Shows tradeoff

tn

fp tp fn

System returned these

Actual relevant docs

fptp
tp
+

fntp
tp
+

Recall

Precision

Precision/Recall

Can get high recall (but low precision) by retrieving
all docs on all queries!
Recall is a non-decreasing function of the number
of docs retrieved

Precision usually decreases (in a good system)
Difficulties in using precision/recall

Binary relevance
Should average over large corpus/query ensembles
Need human relevance judgements
Heavily skewed by corpus/authorship

6

A combined measure: F

Combined measure that assesses this tradeoff is
F measure (weighted harmonic mean):

People usually use balanced F1 measure
i.e., with β = 1 or α = ½

Harmonic mean is conservative average
See CJ van Rijsbergen, Information Retrieval

RP
PR

RP

F
+

+
=

−+
= 2

2)1(
1)1(1

1
β
β

αα

Precision-recall curves

Evaluation of ranked results:
You can return any number of results ordered by
similarity
By taking various numbers of documents (levels of
recall), you can produce a precision-recall curve

Precision-recall curves Evaluation

There are various other measures
Precision at fixed recall

This is perhaps the most appropriate thing for web
search: all people want to know is how many good
matches there are in the first one or two pages of results

11-point interpolated average precision
The standard measure in the TREC competitions: you
take the precision at 11 levels of recall varying from 0 to
1 by tenths of the documents, using interpolation (the
value for 0 is always interpolated!), and average them

Ranking models in IR

Key idea:
We wish to return in order the documents most
likely to be useful to the searcher

To do this, we want to know which documents
best satisfy a query

An obvious idea is that if a document talks about a
topic more then it is a better match

A query should then just specify terms that are
relevant to the information need, without
requiring that all of them must be present

Document relevant if it has a lot of the terms

Binary term presence matrices

Record whether a document contains a word:
document is binary vector in {0,1}v

Idea: Query satisfaction = overlap measure:

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

YX ∩

7

Overlap matching

What are the problems with the overlap
measure?
It doesn’t consider:

Term frequency in document
Term scarcity in collection (document mention
frequency)
Length of documents

(And length of queries: score not normalized)

Many Overlap Measures

|)||,min(|
||
||||

||
||
||

||||
||2

||

2
1

2
1

DQ
DQ
DQ

DQ
DQ
DQ
DQ

DQ
DQ

∩
×

∩
∪
∩
+
∩

∩ Simple matching (coordination level match)

Dice’s Coefficient

Jaccard’s Coefficient

Cosine Coefficient

Overlap Coefficient

Documents as vectors

Each doc j can be viewed as a vector of tf×idf
values, one component for each term
So we have a vector space

terms are axes
docs live in this space
even with stemming, may have 20,000+
dimensions

(The corpus of documents gives us a matrix,
which we could also view as a vector space in
which words live – transposable data)

The vector space model

Query as vector:
We regard query as short document
We return the documents ranked by the
closeness of their vectors to the query, also
represented as a vector.

Developed in the SMART system (Salton,
c. 1970) and standardly used by TREC
participants and web IR systems

Vector Representation

Documents and Queries are represented as vectors.
Position 1 corresponds to term 1, position 2 to term 2,
position t to term t
The weight of the term is stored in each position

absent is terma if 0

 ,...,,

,...,,

21

21

=

=

=

w

wwwQ

wwwD

qtqq

dddi itii

Vector Space Model
Documents are represented as vectors in term space

Terms are usually stems
Documents represented by weighted vectors of terms

Queries represented the same as documents

Query and Document weights are based on length and
direction of their vector

A vector distance measure between the query and
documents is used to rank retrieved documents

8

Documents in 3D Space

Assumption: Documents that are “close together”
in space are similar in meaning.

Document Space has High
Dimensionality

What happens beyond 2 or 3 dimensions?
Similarity still has to do with how many tokens
are shared in common.
More terms -> harder to understand which
subsets of words are shared among similar
documents.
We will look in detail at ranking methods
One approach to handling high
dimensionality:Clustering

Word Frequency

Which word is more indicative of document
similarity? ‘the’ ‘book’ or ‘Oren’?

Need to consider “document frequency”---how
frequently the word appears in doc collection.

Which document is a better match for the query
“Kangaroo”?

One with 1 mention of Kangaroos or one with 10
mentions?
Need to consider “term frequency”---how many
times the word appears in the current document.

tf x idf

)/log(* kikik nNtfw =

log

Tcontain that in documents ofnumber the
 collection in the documents ofnumber total

in T termoffrequency document inverse
document in T termoffrequency

document in term

⎟
⎠
⎞⎜

⎝
⎛=

=
=
=
=
=

n
Nidf

Cn
CN
Cidf

Dtf
DkT

k
k

kk

kk

ikik

ik

Inverse Document Frequency

IDF provides high values for rare words and low
values for common words

4
1

10000log

698.2
20

10000log

301.0
5000

10000log

0
10000
10000log

=⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

tf x idf normalization
Normalize the term weights (so longer documents are not
unfairly given more weight)

normalize usually means force all values to fall within a certain
range, usually between 0 and 1, inclusive.

∑ =

=
t

k kik

kik
ik

nNtf

nNtfw
1

22)]/[log()(

)/log(

9

Vector space similarity
(use the weights to compare the documents)

 terms.) thehting when weigdone tion was(Normaliza
product.inner normalizedor cosine, thecalled also is This

),(

 :is documents twoof similarity theNow,

1
∑
=

∗=
t

k
jkikji wwDDsim

What’s Cosine anyway?

One of the basic trigonometric functions encountered in trigonometry.
Let theta be an angle measured counterclockwise from the x-axis along the
arc of the unit circle. Then cos(theta) is the horizontal coordinate of the arc
endpoint. As a result of this definition, the cosine function is periodic
with period 2pi.

From http://mathworld.wolfram.com/Cosine.html

Cosine Detail (degrees)
Computing Cosine Similarity
Scores

2α

1α 1D

Q
2D

98.0cos
74.0cos

)8.0 ,4.0(
)7.0 ,2.0(
)3.0 ,8.0(

2

1

2

1

=
=

=
=
=

α
α

Q
D
D

1.0

0.8

0.6

0.8

0.4

0.60.4 1.00.2

0.2

Computing a similarity score

98.0
42.0

64.0

])7.0()2.0[(*])8.0()4.0[(
)7.0*8.0()2.0*4.0(),(

yield? comparison similarity their doesWhat
)7.0,2.0(document Also,

)8.0,4.0(or query vect have Say we

22222

2

==

++

+
=

=
=

DQsim

D
Q

To Think About

How does this ranking algorithm behave?
Make a set of hypothetical documents consisting
of terms and their weights
Create some hypothetical queries
How are the documents ranked, depending on the
weights of their terms and the queries’ terms?

10

Summary: What’s the real point of
using vector spaces?

Key: A user’s query can be viewed as a (very)
short document.
Query becomes a vector in the same space as
the docs.
Can measure each doc’s proximity to it.
Natural measure of scores/ranking – no longer
Boolean.

