PAGE
8

 Lee, Kha -

[image: image1.png]Prajsct DI

the webcam searcher

An Approach to Focused Search-Engine with
Expanded Crawling and Selected Indexing

Prepared By:
Bo Kyong Lee, Hoang Kha
CSE 454: Internet Capstone

Department of Computer Science and Engineering

University of Washington
Seattle, WA
Abstract

The rapidly and widely expanded world-wide-web offered its users countless documents when they search for a certain topic. At the same time, it poses great challenges to the servers as the number of links they must process to return a set of hits grows larger and larger. Expanded crawling – selected indexing approach the problem by crawling deeply into a set of urls, fetch every pages on its way into its db; then, at the time of indexing, only pages that satisfy certain condition are indexed. By expanded crawling and fetching, the webdb can be reused for other focused indexing. This approach was planned with the authors’ ambition to reduce the number of crawling, also reduce its required traffic on the web. Project Philo illustrated this idea by focused on the webcams pages that are posted on the web. The focused search-engine can then be used for special purposes that need quick returns to queries in the focused fields. Project Philo also illustrates steps in categorization the indexed documents. Its search engine will be able to answer specific questions about these categorized topics.
Keywords: Web focused search; Selected index; Categorization.

1. Introduction
The fact that the World-Wide-Web continues to expand its size by adding millions of pages per day gives the users a wide range of information at their finger tips. At the same time, this fact threatens the web server community to a greater amount of search before returning a set of hits to a simple query. Along with other problems as traffic jams, loosing threads on the web, and etc, the larger the web grows, the more searches are needed. These problems link together and form a cycle. The benefit of wider range of easy accessed documents would then be outweighed by these problems. With that in mind, the authors of the Philo project are trying to minimize its traffic on the web by widely crawling and fetching all the pages on its ways.
The authors of project Philo try to effectively index all the webcam pages in their prefetched webdb. The webcams are indexed based on a set of predefined attributes. The indexing part will be done using a set of pre-conditions to eliminate pages that are not related to the focused topic (webcam). Once the page satisfies these pre-conditions, it will be categorized by a set of rules. By doing this, the Philo project will be able to effectively service a wide range of users that have the same common focuses while maintaining its low traffics on the web. The Philo project also offers its users choices of widening the focused area, i.e. the users can choose to have all the webcams at one specific location, or expand their search on near by locations around. The users will also be able to choose to view only the webcams that are for weather forecast, or traffic. Moreover, they also have the ability of choosing to view only the indoor or outdoor cams.
2. Focused Crawling

2.1
Index only Webcams

The purpose of webcam indexing is to eliminate unnecessary pages in the Philo index so that it reduces the amount of space used for indexing and increases the speed for searching. Once a page is fetched, Philo examine the page to determine whether the page is webcam or not. If it is, the page is indexed, and if not, the page is ignored.

The learning algorithm for determining webcam pages is generated by WEKA. We created data based on the actual webcam and non-webcam pages. The criteria of attributes are whether the title, url, or content of the page contains clue words such as “web cam” and “live cam.” Then we applied rules provided by WEKA to get the best result.
2.2
Search by Location
The primary focuses of the Philo project are the webcams on the web. The users first need to enter a city name to start the search. Their query will then be returned with a set of webcams in the chosen city. If the set is too big, the users will see a page of ten results each time, along with the number of total hits. The total number of hits includes more than one page on a site. However, the results do not include more than two results per site. If the user wants to see all the pages, we provide a “show all” buttons to enable this option.
At the end of the result list, the user will be provided with the list of cities around the queried city. Philo offers internally three levels of city index search based on the precision of the stored latitude and longitude. If the number of cities is small, Philo expands its search for broader area.
The decision of separating the City-Location Process Component from the main project component (the Webcam Searcher component) is made based on the functionalities of each component. It is very tempted to include another field for location in the main component document. However, doing so would unnecessarily expand the document, and worse, clumsily repeat a service that Nutch already provides. The City-Location Process Component stands by itself and provides the service to the main component through its CityIndexSearcher class. This stand-alone class also has the high potential of servicing other focused search-engine in the future.
2.3
Search by Webcam Type

The Type Searching mechanism is based on the classification of the pages. Philo offers four classes, which are Traffic cam, Weather cam, Outdoor cam, and Indoor cam, based on the contents of each page.
Again, we adopted rules generated by WEKA. For each class, we generated data to test, and we applied them into WEKA. Since we have four separate rules, a certain page could be classified into at most four classes. These classes are represented by Field in document. Philo’s documents are created by adding the appropriate fields to the basic Nutch’s document during the indexing step. These fields are added only if the page satisfies each rule we generated. At the time of processing query, these fields are used to filter the final results.
If a user specifies a type in the browser, the result query only includes the documents that classified with that specified type. By default, it is set to “All” which returns all types.

3. System architecture
The authors of Philo project take advantage of the open-source Nutch project and its related project of Lucene. Philo uses Tomcat for its data containers. For the learning algorithm, Philo uses the open-source Weka project to create its rules.

[image: image2]
Figure 1: Philo Architecture
The City-Location Process Component is created from two text files, which are Cities.txt and Countries.text, provided by MaxMind (http://www.maxmind.com/app/worldcities). From Cities.txt, the following fields are extracted and used in the project: country code, city name, latitude, longitude. These fields, together with country code and country name in Countries.txt, are processed and indexed. Each document in this component represents a city. An addition field is also added for future search: position field that includes longitude and latitude. The City-Location Process Component has three indices for three levels of precision: to hundredth, tenth, and one unit of latitude and longitude. These levels of precision are then used to return the appropriate number of document to a query.
__
4. Evaluation of Learning Algorithm
For webcam determining rule, we used 44 webcam sites and 44 non-webcam site to train our data. Then we applied the data into both rules one that we created intuitively and the other one that generated by WEKA.

The rule that we created is based on points for each condition. We gave 1 point for each condition and if the total point is greater than 1, we classified the page as Webcam. The conditions are as follows:

· Whether url contains word “webcam,” “web cam,” “live cam,” “livecam”
· Whether the title of the page contains the words above.

· Whether the content contains the words above.

· Whether the page contains an image file

For WEKA generation, we used following attributes:
· Whether url contains word “webcam,” “web cam,” “live cam,” “livecam”
· Whether the title of the page contains the words above.

· Whether the content contains a word “cam”
· Whether the content contains a word “webcam” or “web cam”
· Whether the content contains a word “livecam” or “live cam”
· Whether the content contains a word “shop”
· Whether the content contains a word “camera”
· Whether the page contains an image file

For each attribute, if the page satisfies the condition, the value of the attribute gets 1. Otherwise, it gets 0.
Figure 2 illustrates the result from WEKA.

[image: image3.png]Run information

Schene
Relation: web

Instances: 88

attributes: 9

Class

urt

Title

can

webcan

Tivecan

shop

canera

inage

10-fold cross-validgation

Test node:

RIpple DOwn Rule Learner(Ridor) rules

Class = none
Except
Except
Except
Except

(88.0/44.0)

Total nuaber of rules (incl. the default rule):

Tine taken to build model: 0.12 seconds

Stratified cross-validgation
Sunnary

Correctly Classified Instances
Tncorrectly Classified Instances
Kappa statistic

Mean absolute error

Root nean squared error

Relative absolute error

Root relative squared error
Total Number of Instances

Detailed Accuracy By Class

TP Rate FP Rate Precision Recall
0.977 0.227 0.811 0.977
0773 0.023 0971 0.773

Confusion Matrix

ab Classified as
43 1] a=none
10 34 | b = webcan

Classifier nodel (full training set)

(webcan > 0.5) and (title > 0.5) => class = webcan
(webcan > 0.5) and (canera
Qlivecan > 0.5) => class

(can > 0.5) and (webcan > 0.5)

77
1

0.75
0.125
0.3538
24872 %
70,6271 %
EE

F-Measure
0.887
0.861

0.5)
webcan

weka, Classifiers. rules. Ridor F 3 -5 1 - 2.0

(12.0/0.0) [6.0/0.0]

> Class = webcan (8.0/0.0) [1.0/0.0]
(5.0/0.0) [1.0/0.0]
Class = webcan (2.0/1.0) [2.0/0.0]

8.5 %
12,5 %

Qass

none

wehcan

Figure 2: Run Information from WEKA
As a result, our rule generated slightly better result with given data set with 8 incorrect classifications. However, we decided to use WEKA rule over our rule because we thought that Ridor rule (generated by WEKA) might give better result in lager data. The comparison graph is shown in Figure 3.
[image: image4.emf]Comparision of Rules

0

0.2

0.4

0.6

0.8

1

1.2

precision of

webcam

precision of

none-

webcam

recall of

webcam

recall of

none-

webcam

our rule

WEKA rule

Figure 3: Comparison of Rules
For the classification of webcam types, we applied similar strategy to determine each field.
__
5. Conclusion
Even though almost every decision we make during the time of doing this project is carefully thought out and discussed, we still make some wrong decisions. As an example, the City-Location Process Component has three city indices depends on the precision of data in latitude and longitude fields. This clumsy implementation is in fact from our experiments. We reuse the three indices for implementing our precision level functionality as a legacy instead of making a new one with three levels of precision.
We believe that with its architecture, this project is extendable. The mechanism for categorization can be expanded to add more fields to the documents. We can also process image to get more precise result in data mining. We gained a great deal of learning as well as cooperation experience doing Philo project.
6. Appendix

6.1
Attribution

Project Philo is the result of the creation of two classmates, Bo Kyong Lee and Hoang Kha, in the CSE 454-Internet Capstone class at the University of Washington. Throughout the ten-week term of the class, we closely and consistently work together to come up with ideas of how to realize each step and/or milestone. Because the milestones were designed for a team of three, during the later second half of the quarter, the closely cooperation between these teammates, together with help from the course’s staff really makes the milestones realized on time. The actual coding was also done mostly together, with the jobs’ emphasis as follow:
· Bo Kyong Lee: Data learning and Searcher.

· Hoang Kha: The City – Location Process Component.

6.2

Other Code
Philo is developed using Nutch project as the base. The code of City-Location Process Component is also modified from the IndexSegment.java file from Nutch. The CityIndexSearcher.java uses Lucene API.

6.3

Acknowledgement
 We thank Professor Dan Weld and the TA, Mr. Alan Liu for their supports in realizing this project. Without them, we would be lost in a jungle of information and the big Nutch project. Their guidance and suggestions help us focus on what we need to do with our limit resource are greatly appreciated.

 (Spring 2005)

generate

nearby

cities

Cities

index

Cities.txt

Countries.txt

Nutch built-in

Index

+

Classification Fields

show results

To user

user

query

Philo

Search

Engine

DocIds

inverted

index

store documents,

check for duplicates,

extract links

create

a city

index

crawl the

web

