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Information Extraction and the Future of 
Web Search
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Motivation for Web IE

• What universities have active biotech 
research and in what departments?

• What percentage of the reviews of the 
Thinkpad T-40 are positive? 

The answer is not on any single Web page!
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Review: Unsupervised Web IE

Goal: Extract information on any subject 
automatically.
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Review: Extraction Patterns

Generic extraction patterns (Hearst ’92):
• “…Cities such as Boston, Los Angeles, and 

Seattle…”
(“C such as NP1, NP2, and NP3”) =>   

IS-A(each(head(NP)), C), …

• “Detailed information for several countries
such as maps, …”    ProperNoun(head(NP))

• “I listen to pretty much all music but prefer 
country such as Garth Brooks”
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“Erik Jonsson, CEO of Texas Instruments, mayor of 
Dallas from 1964-1971, and…” 
“Erik Jonsson, CEO of Texas Instruments, mayor of
Dallas from 1964-1971, and…” 

Binary Extraction Patterns
R(I1, I2) I1, R of I2

Instantiated Pattern:
Ceo(Person, Company) <person> , CEO of <company>

“…Jeff Bezos, CEO of Amazon…”
“..Matt Damon, star of  The Bourne Supremacy..”
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Review: Unsupervised Web IE

Goal: Extract information on any subject 
automatically.
→Generic extraction patterns

Generic patterns can make mistakes.
→Redundancy.
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Redundancy in Information Extraction

In large corpora, the same fact is often asserted 
multiple times:
“…and the rolling hills surrounding Sun 
Belt cities such as Atlanta”
“Atlanta is a city with a large number 
of museums, theatres…”
“…has offices in several major 
metropolitan cities including Atlanta”

Given a term x and a set of sentences about a 
class C, what is the probability that x ∈ C?
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Redundancy – Two Intuitions

2)   Multiple extraction mechanisms
HitsPhrase

1)   Repetition

“Atlanta and other cities” 980
“Canada and other cities” 286
“cities such as Atlanta” 5860
“cities such as Canada” 7

Goal: A formal model of these intuitions.
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Outline

1. Modeling redundancy – the problem
2. URNS model
3. Parameter estimation for URNS

4. Experimental results
5. Summary
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1. Modeling Redundancy – The Problem

Consider a single extraction pattern:
“C such as x”

Given a term x and a set of sentences about a 
class C, what is the probability that x ∈ C?
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1. Modeling Redundancy – The Problem

Consider a single extraction pattern:
“C such as x”

If an extraction x appears k times in a set of n 
sentences containing this pattern, what is the 
probability that x ∈ C?
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Modeling with k

“…countries such as Saudi Arabia…”
“…countries such as the United States…”
“…countries such as Saudi Arabia…”
“…countries such as Japan…”
“…countries such as Africa…”
“…countries such as Japan…”
“…countries such as the United Kingdom…”
“…countries such as Iraq…”
“…countries such as Afghanistan…”
“…countries such as Australia…”

Country(x)

extractions, n = 10
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Modeling with k
Country(x)

extractions, n = 10
Saudi Arabia
Japan
United States
Africa
United Kingdom
Iraq
Afghanistan
Australia

k
2
2
1
1
1
1
1
1

Noisy-Or Model :
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 times appears 

p is the probability that a single 
sentence is true.

ornoisyP −
0.99
0.99
0.9
0.9
0.9
0.9
0.9 
0.9

Important: 
–Sample size (n) 
–Distribution of C }Noisy-or ignores these

p = 0.9
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Needed in Model: Sample Size

k
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As sample size increases, noisy-or becomes inaccurate.
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Needed in Model: Distribution of C
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Needed in Model: Distribution of C
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Needed in Model: Distribution of C
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Probability that x ∈ C depends on the distribution of C.
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Outline

1. Modeling redundancy – the problem
2. URNS model
3. Parameter estimation for URNS

4. Experimental results
5. Summary
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2. The URNS Model – Single Urn
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2. The URNS Model – Single Urn

U.K.
Sydney

Urn for City(x)

Cairo
Tokyo

Tokyo

Atlanta

Atlanta

Yakima

Utah

U.K.

22

Tokyo

2. The URNS Model – Single Urn

U.K.
Sydney

Urn for City(x)

Cairo
Tokyo

Tokyo

Atlanta

Atlanta

Yakima

Utah

U.K.

…cities such as Tokyo…
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Single Urn – Formal Definition

C – set of unique target labels
E – set of unique error labels
num(b) – number of balls labeled by b ∈ C ∪ E
num(B) –distribution giving the number of balls for 

each label b ∈ B.
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Single Urn Example

num(“Atlanta”) = 2

num(C) = {2, 2, 1, 1, 1}

num(E) = {2, 1}

Estimated from data

U.K.
Sydney

Urn for City(x)

Cairo
Tokyo

Tokyo

Atlanta

Atlanta

Yakima

Utah

U.K.
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Single Urn: Computing Probabilities

If an extraction x appears k times in a set of n 
sentences containing a pattern, what is the 
probability that x ∈ C?
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Single Urn: Computing Probabilities

Given that an extraction x appears k times in n
draws from the urn (with replacement), what is 
the probability that x ∈ C?
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Consider the case where num(ci) = RC and num(ej) = RE

for all ci ∈ C, ej∈ E

Then:

Then using a Poisson Approximation:

Odds increase exponentially with k, but decrease exponentially with n.

Uniform Special Case
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The URNS Model – Multiple Urns

Correlation across extraction mechanisms is 
higher for elements of C than for elements of E.
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Outline

1. Modeling redundancy – the problem
2. URNS model
3. Parameter estimation for URNS

4. Experimental results
5. Summary
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Simplifying Assumptions:
– Assume that num(C) and num(E) are Zipf

distributed.
• Frequency of ith most repeated label in C 

– Then num(C) and num(E) are characterized by 
five parameters:

pECzz EC ,,,,

3. Parameter Estimation for URNS

Czi−∝
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Supervised Learning
– Differential Evolution (maximizing conditional 

likelihood)
Unsupervised Learning

– Growing interest in IE without hand-tagged 
training data (e.g. DIPRE; Snowball; 
KNOWITALL; Riloff and Jones 1999; Lin, 
Yangarber, and Grishman 2003)

– How to estimate num(C) and num(E)?

Parameter Estimation
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Unsupervised Learning
– EM, with additional assumptions:

• |E| = 1,000,000
• zE = 1
• p is given (p = 0.9 for KnowItAll patterns)

Unsupervised Parameter Estimation
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EM for Unsupervised IE:
– E-Step: Assign probabilities to extracted facts 

using URNS.
– M-Step: 

1. Estimate zC by linear regression on log-log scale.
2. Set |C| equal to expected number of true labels 

extracted, plus unseen true labels (using Good-
Turing estimation).

EM Process
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Outline

1. Modeling redundancy – the problem
2. URNS model
3. Parameter estimation for URNS

4. Experimental results
5. Summary
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Previous Approach: PMI (in KNOWITALL, 
inspired by Turney, 2001)

PMI(“<City> hotels”, “Tacoma”) =

–Expensive: several hit-count queries per extraction
–Using URNS improves efficiency by ~8x

–‘Bootstrapped’ training data not representative

–Probabilities are polarized (Naïve Bayes)

( )
( )Tacoma""

hotels" Tacoma"
Hits

Hits

4. Experimental Results
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11x8xp = 0.80

18x14x|E| = 105

18x14xzE = 0.9

12x9xp = 0.95

18x13x|E| = 107

19x15xzE = 1.1

19x14xzE = 1, | E| = 106, 
p = 0.9

URNS improvement over:
Noisy-or           PMI

Parameter

URNS Robust to Parameter Changes
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Loss Functions: 

(False +) = (False –)

Classification Accuracy
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Supervised Results
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SVM

URNS outperforms noisy-or by 19%, logistic regression by 
10%, but SVM by less than 1%.
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Modeling Redundancy – Summary

Given a term x and a set of sentences about a 
class C, what is the probability that x ∈ C?
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URNS Model of Redundancy in Text 
Classification

Parameter learning algorithms

Substantially improved performance for 
Unsupervised IE

Modeling Redundancy – Summary
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Pattern Learning

City =>
– cities such as <City>
– <City> and other cities
– cities including <City>
– <City> is a city, etc. 

But what about:
– <City> hotels
– headquartered in <City>
– the greater <City> area, etc.
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Pattern Learning (PL)
Seed Instances:
Moscow
Cleveland
London
Mexico City

Web Search Engine
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Pattern Learning (PL)
Seed Instances:
Moscow
Cleveland
London
Mexico City

…near the city of Cleveland you can find the …

Web Search Engine

Context Strings:
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Pattern Learning (PL)
Seed Instances:
Moscow
Cleveland
London
Mexico City

…near the city of Cleveland you can find the …

Large collection of 
context strings

Web Search Engine

The “best” patterns:
city of <City>

Context Strings:

A pattern is any substring of a context string that includes the seed.

Repeat as desired
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Which patterns are “best”
Both precision and recall are important, but hard to 
measure.
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Which patterns are “best”

Where:
– The pattern is found for c target seeds and n non-target seeds.
– S is the total number of target seeds.
– k/m is a prior estimate of pattern precision.

mnc
kcrecisionEstimatedP
++

+
=

S
cecallEstimatedR =

Both precision and recall are important, but hard to 
measure.
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Patterns as Extractors and 
Discriminators

Patterns 
Pattern 
Learner 

(PL) 

Extractors  
(increase 
coverage)  
Discriminators  
(increase 
accuracy) 
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“City”
Execute domain-independent 
extractors
e.g. cities such as <City>

Web Search Engine

Parse web 
pagesCompute PMI with domain-

independent discriminators 
(e.g. “Tacoma and other 
cities” has 80 hits)

City(“Tacoma”) 
with probability 
0.998

KnowItAll
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“City”
Execute domain-independent 
and learned extractors
e.g. headquartered in <City>

Web Search Engine

Parse web 
pagesCompute PMI with domain-

independent or learned 
discriminators (e.g. “Tacoma 
hotels” has 42,000 hits)

City(“Tacoma”) 
with probability 
0.998

KnowItAll with Pattern 
Learning
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“City”

Web Search Engine

Parse web 
pages

City(“Tacoma”) 
with probability 
0.998

KnowItAll with Pattern 
Learning

Experiment 2

Experiment 1
Execute domain-independent 
and learned extractors
e.g. headquartered in <City>

Compute PMI with domain-
independent or learned 
discriminators (e.g. “Tacoma 
hotels” has 42,000 hits) 52

Experiment 1: Learned 
patterns as extractors

Baseline – KnowItAll with domain independent 
extractors.

Baseline+PL – KnowItAll with both domain-
independent and learned extractors.

In both cases, domain independent discriminators.
We compare coverage – i.e. the number of instances 

extracted at a fixed level of precision (0.90).
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Experiment 1: Learned 
patterns as extractors

Film

Adding PL improves coverage by 50% to 80%.
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Experiment 1: Learned 
patterns as extractors

Pattern Correct 
Extractions

Precision

the cities of <City> 5215 0.80
headquartered in <City> 4837 0.79
for the city of <City> 3138 0.79
in the movie <Film> 1841 0.61
<Film> the movie starring 957 0.64
movie review of <Film> 860 0.64
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Experiment 2: Learned 
patterns as discriminators

Baseline – Uses domain 
independent discriminators.

Baseline+PL – Uses both domain 
independent and learned 
discriminators.

We compare the classification
accuracy of the two methods 
(the fraction of extractions 
classified correctly as positive 
or negative) after running two 
discriminators on each of 300 
extractions.
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Experiment 2: Learned 
patterns as discriminators

Baseline – Uses domain 
independent discriminators.

Baseline+PL – Uses both domain 
independent and learned 
discriminators.

We compare the classification
accuracy of the two methods 
(the fraction of extractions 
classified correctly as positive 
or negative) after running two 
discriminators on each of 300 
extractions.

Adding PL reduces 
classification errors 
by 28% to 35%
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Selecting discriminators

In Experiment 2, for each extraction we 
executed:
– a fixed pair of discriminators
– choosing those with the highest precision

This approach can be improved.
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Selecting discriminators

The baseline ordering can be improved in several 
ways:
– Precision and recall are important for accuracy.
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Selecting discriminators

The baseline ordering can be improved in several 
ways:
– Precision and recall are important for accuracy.
– Discriminators can perform better on some extractions 

than on others:
• E.g. rare extractions:

– A high-precision but rare discriminator might falsely return a 
PMI a zero (e.g. “cities such as Fort Calhoun” has 0 hits)

– Using a more prevalent discriminator on rare facts could improve
accuracy (e.g. “Fort Calhoun hotels” has 20 hits).
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Selecting discriminators

The baseline ordering can be improved in several 
ways:
– Precision and recall are important for accuracy.
– Discriminators can perform better on some extractions 

than on others:
• E.g. rare extractions:

– A high-precision but rare discriminator might falsely return a 
PMI a zero (e.g. “cities such as Fort Calhoun” has 0 hits)

– Using a more prevalent discriminator on rare facts could improve
accuracy (e.g. “Fort Calhoun hotels” has 20 hits).

– The system should prioritize uncertain extractions.
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The Discriminator Selection 
Problem

Goal: given a set of extractions and 
discriminators, find a policy that maximizes 
expected accuracy.
– Known as “active classification.” Assume 

discriminators are conditionally independent (as 
in Guo, 2002).

The general optimization problem is NP-hard.
The MU Heuristic is optimal in important special 

cases and improves performance in practice.
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The MU Heuristic
Greedily choose the action with maximal marginal utility 

MU:

We can compute MU given 
– the discriminator’s precision and recall (adjusted according to the 

extraction’s hit count) 
– the system’s current belief in the extraction.

(similar to Etzioni 1991).

action ofcost 
accuracyin  increase Expected

=MU
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Experiment 3: Testing the 
MU Heuristic

As in experiment 2, the Baseline and Baseline+PL 
configurations execute two discriminators 
(ordered by precision) on each of 300 extractions.

The MU configurations are constrained to execute 
the same total number of discriminators (600), but 
can dynamically choose to execute the 
discriminator and extraction with highest marginal 
utility.
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Experiment 3: Testing the 
MU Heuristic

Ordering by MU further reduces classification errors by 19% 
to 35%, for a total error reduction of 47% to 53%.
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Summary

Pattern Learning
– Increased coverage by 50% to 80%.
– Decreased errors 28% to 35%.

Theoretical Model
– decreased errors an additional 19% to 35%.
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Extensions to PL

Complex patterns
– Syntax (Snow and Ng 2004), Classifiers (Snowball)
– Tend to require good training data

Iteration (Patterns->Seeds->Patterns->….)
– (Brin 1998, Agichtein and Gravano 2000, Riloff 1999)
– Scope creep…URNS?
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Backup

68

Additional Experiments
Normalization/Negative Evidence

– Don’t mistake cities for countries, etc (e.g. Lin 
et al 2003, Thelen & Riloff 2002)

Learning extraction patterns
– E.g. DIPRE, Snowball

Other applications
– E.g. PMI applied to synonymy (Turney, 2001)

Future Work

69

0.9

p

0.9990.9999010,0003

RC/RE Pnoisy-or Purnsnk

URNS adjusts for sample size and 
distribution of C and E

0.9300.999910,0000.93
0.1960.999920,0000.93

70
URNS works when the confusion region is small.

When is URNS effective?

71

The URNS Model – Multiple Urns

HitsPhrase
“Atlanta and other cities” 980

5860“cities such as Atlanta”
6x

“Canada and other cities” 286
“cities such as Canada” 7

0.02x

Correlation between counts for different extractors is informative.

“Texas and other cities” 4710
“cities such as Texas” 9

0.002x

72

Modeling the Urns:
– zC, zE, |C|, |E| the same for all urns.
– Different extraction precisions p.

Modeling correlation between Urns:
– Relative frequencies are perfectly correlated for 

elements of C, and some elements of E.
– The remaining elements of E appear for only 

one kind of extraction mechanisms.

Multi-urn Assumptions
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Am(x, k, m) = Event that extraction x is seen k times 
in urn m.

Multi-urn Assumptions

( ) ( )( )
( )( )

( )( )∑∏

∑∏
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∈
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=

∈

ECx
Mm mmm

Cc
Mm mmim

MM

nkxAP

nkcAP

nnkkxCxP

i

,,

,,

draws,...,in  times ,..., appears ||1||1

With our assumptions, we can obtain the above 
expression in closed form.
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Recall – Distribution of C
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Probability that x ∈ C depends on the distribution of C.
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Untagged Data
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A mixture of samples from num(C) and num(E):

Challenge: Estimate num(C), num(E).
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Redundancy in IE 
– Heuristics/noisy-or models (e.g. Riloff & Jones 1999; Brin

1998; Agichtien & Gravano 2000; Lin et al. 2003)

– Supervised models (Skounakis & Craven, 2003)
– Do not model n, num(C), num(E)

BLOG models (Milch et al. 2004)
– Our focus is on IE/Text Classification; we give 

algorithms, experimental results

Related Work
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CRFs for confidence estimation (Culotta & 
McCallum, 2004)

– Our interest is combining evidence from multiple 
extractions.

Related Work

78

Supervised Results

Deviation from the ideal log-likelihood.


