A Search Engine for Natural Language
Applications
AND
Relational Web Search: A Preview

Michael J. Cafarella

(joint work with Michele Banko, Doug Downey, Oren
Etzioni, Stephen Soderland)

CSE454
University of Washington
November 15, 2005

~| Outline

= NLP applications and the web corpus
= The Bindings Engine
= Query language
= Neighbor Index
= Experiments
= >300x performance gain
= ~4Xx space penalty
= Novel applications
= Relational Web Search: Preview

2

~| NLP Applications: An Example
= KnowltAll (Etzioni et al, WWWO04, Al1JO5):
unsupervised web-scale info extraction
= Generate candidate fact-extractions from web
= Use extraction frequencies to assess probability
that a candidate extraction is true
= Simplified algorithm:
= Search web for various hypernym-phrases (e.g.,
“cities such as X” where X is a noun)
= Count hits for each unique X

= Use hit counts as inputs to trained classifier
= Sort Xs by classifier probability, then threshold

amazon.com

[—
0
— B
%
}7;0

1. Start w/NLP query
2. Query search engine for URLs w/concrete
3. Download all pages

4. Parse downloaded text

5. (which might be useless)

6. Collect appropriate variable bindings

Pointwise Mutual Information
~| Information Retrieval (PMI-IR)
= Turney uses PMI-IR to find semantic
orientation (ACL02)
= Estimate co-occur probs using hitcounts

SO(phrase):Iog(h'ts(phrase NEAR "excellent")hits(" poor)]

hits(phrase NEAR " poor*)hits("excellent™)

= Anything more than NEAR (e.qg., breaking
at sentences) requires original text

= If there are 10k phrases and 14 reference
words, we need 140k search queries

~| Search engine inefficiencies

= Search engines ill-suited to the task

= System must download and parse many
docs for each query; many end up as
useless

= Worst of all, each downloaded document
likely requires a disk seek

= Certain apps require #queries =
#candidates x #phrases

= Problems common to many NLP apps

5| Bindings Engine
= Bindings Engine (BE) is search engine

where:

= No downloads during query processing

= Disk seeks constant in corpus size

= #queries = #phrases

= BE's approach:

= “Variabilized” search query language

= Pre-processes all documents before query-
time

= Integrates variable/type data with inverted
index, minimizing query seeks

8

~| Query language
cities such as <NounPhrase>

President Bush <Verb>
<NounPhrase> is the capital of <MNounPhrase>
reach me at <phone-number>

= Any sequence of concrete terms and typed variables
= (some limitations posed by current index)
= NEAR is insufficient

= Paper also discusses functions, which modify
variable bindings (e.q., “head(<NounPhrase=>)")

~| BE processing model
= Like a search engine, BE:
= Downloads a corpus of pages

= Creates an index
= Uses index to process queries efficiently

= BE further requires:

= Set of indexed types (e.g., “NounPhrase”), with a
“recognizer” for each

= String processing functions (e.g., “head()”)

= A BE system can only process types and
functions that its index supports

10

~| Index design
= Search engines handle scale with inverted

index
= Single disk seek per term
= Mainly sequential reads
= Disk analysis
= Seeks require ~5 ms, so only 200/sec
= Sequential reads transfer 10-40 MB/sec
= Inverted index minimizes expensive seeks; BE
should do the same
= Parallel downloads are just parallel,
distributed seeks; still very costly

as #docs | docid, | docid, | docid, docid,goes.
b|||y #docs | docid, | docid,

cities #docs | docid, | docid, | docid, ‘ docid,
friendly #docs | docid,

give #docs | docid, | docid; | docid, | ‘ docid,,goe 1
mayors #docs | docid, | docid, | docid,

nickels » #docs | docid, | docid,

seattle > #tdocs | docid, | docid, | docid, | | | docid,gec
such #docs | docid, | docid, | docid, docid,ygoce.1
words #docs | docid,

Query: such as

as #docs | docid, | docid; | docid, | | docidgeeq
H 104 21 150 322 2501
bill

- o

cities

friendly

- 1. Test for equality
give 2.Advance smaller pointer

mayors 3.Abort when a list is exhausted
nickels

seattle

such #docs | docid, | docid, | docid, docid, e 1
WOI'dS 15 99 322 426 h 1309

Returned docs:

“such as”

as 14 #docs ‘ docid, | docid, | docid, . ldﬁci# docid,gocs.1 L’l
billy —
cities ‘#posns‘ pos, | pos; | *** ‘ POS 051
friendly
give In phrase queries, match positions as well
mayors
nickels
seattle
such :.{ #docs ‘ docid, | docid, | docid, . lqgci% docid;gocs 1 L’l
words /
‘#posns pos, | pos; |*** ‘ POS 051

~| Neighbor Index
= At each position in the index, store “neighbor

text” that might be useful
= Let's index <NounPhrase> and <Adj-Term>

“I love cities such as Seattle.”

Left Right
IAdjT: “love”

14

15

~| Neighbor Index
= At each position in the index, store “neighbor

text” that might be useful
= Let's index <NounPhrase> and <Adj-Term>

“l love cities such as Seattle.”

Left Right
AdjT: “I” IAJT: “cities”
NP: “1” NP: “cities”

~| Neighbor Index

Query: “cities such as <NounPhrase>"

“l love cities such as Seattle.”

Left Right
IAdjT: “such” AdjT: “Seattle”
NP: “Seattle”

16

“cities such as <NounPhrase>"

as >‘#docs docidy| pos, |docid,| pos, | |docidgocs1| POSsdocs 1
. 19
bl”y P —
cities ‘#posns pos, |neighbor,| pos, |neighbor, } ‘ POS 061 v,
: 12
friendly
. —
give _ . -
blk_offset | #neighbors | neighbor, stry neighbor, stry
mayors <offset> 3 AdT ¢ such NP ione Seattle
nickels
seattle In doc 19, starting at posn 8:
such “I love cities such as Seattle.”
words

1. Find phrase query positions, as with phrase queries
2. If term is adjacent to variable, extract typed value

~| Asymptotic analysis
= kconcrete terms in query
= Bbindings found for query

= N documents in corpus
= 7 indexed types in corpus

Query Time Index Space
(in seeks)
BE O(k) O(N *T7)
Std Model O(k + B) O(N)

18 =B and Nscale together; k often small; 7 often exclusive

~| Experimental details

= 20 machine cluster, 50m page corpus
= BE types: <MNounPhrase=> & <Adj-term=>

= Experiment 1: 150 assorted queries with
1 variable, 2-3 concrete terms. BE vs
Nutch-based “standard implementation”

= Experiment 2: KnowltAll system test

19

Experiment 1: Processing speed

5,000
4,000
3,000

2,000

Time to process, in secs

1,000

0 20,000 40,000 60,000 80,000
Total phrase occurrences in corpus
e Nutch 4 BE

~| Experiment 2: KnowlItAll on BE

Num Std Imp/ BE Speedup
Extractions | google

10k 5,976s

50k 29,880s

150k 89,641s

21

~| Experiment 2: KnowltAll on BE

Num Std Imp/ |BE Speedup
Extractions | Google

10k 5,976s 95s 63x

50k 29,880s 95s 314x
150k 89,641s N/A N/A

2 *BE still has to perform sequential reads, is not optimized

Costs: Index size

1200 4

" -

800 -
m Corpus
600 -

@ Index
400 A
0 T T
Nutch, compressed Nutch, uncompressed BE, compressed corpus

corpus corpus

Size, in GB

Costs: Index construction time

45 4

40 -
354
30 4

251 m Type Recognizer
1 @ Indexer

Run time, in hours
N
o

T
Nutch BE

Novel applications:

,‘ Interactive Information Extraction

= BE is fast enough to allow new
interaction models
= KnowltAll is a batch process

= KnowltNow is interactive; approximates
core of KnowltAll using a few BE queries

25

KnoWITNOW: Search reciite - Mozilla Firefox =

File Edt Yiew Go Bookmarks Tools |Help

B
L H
fesaers xtrat
Found 1782 unique instances of tinsects’ in 2,531 seconds.
{(nly showing the first 1IN
" "nsects’ Seore
I imosgquitoes 1257
2 flics 1224
3. bees 1017
4. butier(lies 1012
5. ants o210
LY bectles 883
7. moths 612
5. |uphids 534 =

4]

Knowlthow Binary: search results - Mozlila Firefox =I=
File Eda Yiew Go Bookmasks Toos Help

. 4
@. <y
S

L
[ciies Jeapaal Extact
Found 188 instaces of the ‘citieskapital’ relation in 28,147 seconds,
oy’ s ‘wapital® of Score
1 Brussels Belgium 1336
2 Moscow Russin 139
3. [Nanjing jiangs Province 130
4. |[Edinburgh Seutkand 111
5. |Prague the Czech Republic 100
6. Jerusalem Israel 75
7. |Pars France 54
H. Delhi Indsa 47
9 Beijing the People Republic of China 40
[l I 0

1K)

28

,’ Relational Web Search
= Consider that last slide for a sec:

= It looks a lot like a database table

= Can web-style search generate structured
output, instead of just a list of docs?

,‘ Relational Web Search (2)
= Modern search works treats docs as bags of
words; no internal structure

= Instead, we use the corpus to assemble a
huge entity-relation graph

29 Commont)

30

,’ Relational Web Search (3)
= We automatically extract it from the doc; it's
called the extraction graph
= All searches are done over the E.G., not the
original document set
= Lets us perform various queries:
= Qualified-list (“west coast liberal arts colleges”)

= Unnamed-item (“tallest inactive volcano in Africa”)

= Relationship (describe relation between Bill Clinton
and Justice Ginsberg)

= Tabular (database table of cities and capitals)

31

~| The Extraction Graph

= “Is-A” edges come from KnowItAll
= Predicate edges found by looking for
certain linguistic patterns
= From 90m docs, we have:
= 652m object-relation-object triples
= 227m nodes
= 544m edges
s ~71.7% of “Is-A” correct

= ~44% of predicate edges correct

32

5| Searching

= Perform “spreading activation” search on graph
= Each edge has a “decay factor” that retards spread

33

~| Results: qualified-list

i~

Know ItNow -------
0e L commeon surgical procedures
B animated cartoon characters
c British spy novelists
K] 0.6 F *™ | classic French fare
g = | Italian motoreycle companies
T 0.4 - female deities
o) NATO country leader
Commonwealth nations
0.2 plasma physicists
D 1 1 1 |

1
0 0.2 0.4 0.6 08 1
Recall

34

L| Results: tabular query

Englisk philosopher | was born in
aac N

Isaac Newlon Linculnshine
David Hume Edinburgh

John Locko Somwrsot, England
Thomas Paine Thetford

Adam Smith Kirkealdy

Hobbos Wiltshire town

hilosophine Naturalis Principia...
e

Some Consideration of the Comsequences...
Common Sonse
Wealth of Nations

Lovinthan

35

5| Questions?
= Thanks
= We're hiring!
= Comments to mjc@cs.washington.edu

