
1

A Search Engine for Natural Language 
Applications

AND
Relational Web Search: A Preview

Michael J. Cafarella
(joint work with Michele Banko, Doug Downey, Oren 

Etzioni, Stephen Soderland)
CSE454

University of Washington
November 15, 2005

2

Outline

NLP applications and the web corpus
The Bindings Engine

Query language
Neighbor Index

Experiments
>300x performance gain
~4x space penalty

Novel applications
Relational Web Search: Preview

3

NLP Applications: An Example
KnowItAll (Etzioni et al, WWW04, AIJ05): 
unsupervised web-scale info extraction

Generate candidate fact-extractions from web
Use extraction frequencies to assess probability 
that a candidate extraction is true

Simplified algorithm:
Search web for various hypernym-phrases (e.g., 
“cities such as X” where X is a noun)
Count hits for each unique X
Use hit counts as inputs to trained classifier
Sort Xs by classifier probability, then threshold

I/NP like/VBP cities/NP 
such/JJ as/IN 

Seattle/NP

goals/NP in/IN 
cities/NP such/JJ 

as/IN to/TO
provide/VB

1. Start w/NLP query
2. Query search engine for URLs w/concrete terms
3. Download all pages
4. Parse downloaded text
5. (which might be useless)
6. Collect appropriate variable bindings

cs.washington.edu

amazon.com

wikipedia.org

dictionary.com

“cities such as <NounPhrase>”

“cities such as”

HTTP GET

HTTP GET

HTTP GET

HTTP GET

http://www.yahoo.com/index.html
http://www.cs.washington.edu/index.html
http://en.wikipedia.org/Main_Page
http://www.amazon.com/index.html
…

1. Seattle
2. …

5

Pointwise Mutual Information 
Information Retrieval (PMI-IR)

Turney uses PMI-IR to find semantic 
orientation (ACL02)
Estimate co-occur probs using hitcounts

Anything more than NEAR (e.g., breaking 
at sentences) requires original text
If there are 10k phrases and 14 reference 
words, we need 140k search queries

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)"(")""(
)"(")""(log)(

excellenthitspoorNEARphrasehits
poorhitsexcellentNEARphrasehitsphraseSO

6

Search engine inefficiencies

Search engines ill-suited to the task
System must download and parse many 
docs for each query; many end up as 
useless
Worst of all, each downloaded document 
likely requires a disk seek
Certain apps require #queries = 
#candidates x #phrases

Problems common to many NLP apps



2

7

Bindings Engine
Bindings Engine (BE) is search engine 
where:

No downloads during query processing
Disk seeks constant in corpus size
#queries = #phrases

BE’s approach:
“Variabilized” search query language
Pre-processes all documents before query-
time
Integrates variable/type data with inverted 
index, minimizing query seeks 8

Query language
cities such as <NounPhrase>

President Bush <Verb>
<NounPhrase> is the capital of <NounPhrase>

reach me at <phone-number>

Any sequence of concrete terms and typed variables
(some limitations posed by current index)
NEAR is insufficient
Paper also discusses functions, which modify 
variable bindings (e.g., “head(<NounPhrase>)”)

9

BE processing model
Like a search engine, BE:

Downloads a corpus of pages
Creates an index
Uses index to process queries efficiently

BE further requires: 
Set of indexed types (e.g., “NounPhrase”), with a 
“recognizer” for each
String processing functions (e.g., “head()”)

A BE system can only process types and 
functions that its index supports 10

Index design
Search engines handle scale with inverted 
index

Single disk seek per term
Mainly sequential reads

Disk analysis
Seeks require ~5 ms, so only 200/sec
Sequential reads transfer 10-40 MB/sec

Inverted index minimizes expensive seeks; BE 
should do the same
Parallel downloads are just parallel, 
distributed seeks; still very costly 

words
such
seattle
nickels
mayors
give
friendly
cities
billy
as

#docs docid0 docid1

#docs docid0

#docs docid0 docid1 docid2 docid#docs-1…
#docs docid0 docid1 docid2

#docs docid0 docid1

#docs docid0 docid1 docid2 docid#docs-1…

#docs docid0

#docs docid0 docid1 docid2 docid3

#docs docid0 docid1 docid2 docid#docs-1…

#docs docid0 docid1 docid2 docid#docs-1…
words
such
seattle
nickels
mayors
give
friendly
cities
billy
as

#docs docid0 docid1 docid2 docid#docs-1…

104 21 150 322 2501

15 99 322 426 1309

1.Test for equality
2.Advance smaller pointer
3.Abort when a list is exhausted

Returned docs: 322

Query: such as

#docs docid0 docid1 docid2 docid#docs-1…



3

words
such
seattle
nickels
mayors
give
friendly
cities
billy
as #docs …pos0 pos1 docid#docs-1 pos#docs-1

#posns pos0 pos1
… pos#pos-1

docid0 docid1

#docs …pos0 pos1 docid#docs-1 pos#docs-1docid0 docid1

#posns pos0 pos1
… pos#pos-1

In phrase queries, match positions as well

#docs docid0 docid1 docid2 docid#docs-1…

#docs docid0 docid1 docid2 docid#docs-1…

“such as”

14

Neighbor Index
At each position in the index, store “neighbor 
text” that might be useful
Let’s index <NounPhrase> and <Adj-Term>

“I love cities such as Seattle.”

Left Right
AdjT: “love”

15

Neighbor Index
At each position in the index, store “neighbor 
text” that might be useful
Let’s index <NounPhrase> and <Adj-Term>

“I love cities such as Seattle.”

Left Right
AdjT: “cities”
NP: “cities”

AdjT: “I”
NP: “I”

16

Neighbor Index

Left Right
AdjT: “such”

Query: “cities such as <NounPhrase>”

AdjT: “Seattle”
NP: “Seattle”

“I love cities such as Seattle.”

neighbor1 str1

NPright Seattle

words
such
seattle
nickels
mayors
give
friendly
cities
billy
as #docs …pos0 pos1 docid#docs-1 pos#docs-1

#posns pos0 pos1
… pos#pos-1

docid0 docid1

“cities such as <NounPhrase>”

1. Find phrase query positions, as with phrase queries
2. If term is adjacent to variable, extract typed value

#posns pos0 neighbor0 pos1 neighbor1 … pos#pos-1 …

#neighborsblk_offset

3<offset>

19

12

In doc 19, starting at posn 8: 

“I love cities such as Seattle.”

neighbor0 str0

AdjTleft such

18

Asymptotic analysis
k concrete terms in query
B bindings found for query
N documents in corpus
T indexed types in corpus

O(N)O(k + B)Std Model

O(N * T)O(k)BE

Index SpaceQuery Time 
(in seeks)

B and N scale together; k often small; T often exclusive



4

19

Experimental details

20 machine cluster, 50m page corpus
BE types: <NounPhrase> &<Adj-term>
Experiment 1: 150 assorted queries with 
1 variable, 2-3 concrete terms. BE vs
Nutch-based “standard implementation”
Experiment 2: KnowItAll system test

0

1,000

2,000

3,000

4,000

5,000

0 20,000 40,000 60,000 80,000

Total phrase occurrences in corpus

Ti
m

e 
to

 p
ro

ce
ss

, i
n 

se
cs

Nutch BE

Experiment 1: Processing speed

21

Experiment 2: KnowItAll on BE

150k

50k

10k

Num 
Extractions

89,641s

29,880s

5,976s

Std Imp/
Google

BE Speedup

22

Experiment 2: KnowItAll on BE

150k

50k

10k

Num 
Extractions

89,641s

29,880s

5,976s

Std Imp/
Google

N/A

95s

95s

BE

N/A

314x

63x

Speedup

•BE still has to perform sequential reads, is not optimized

0

200

400

600

800

1000

1200

Nutch, compressed
corpus

Nutch, uncompressed
corpus

BE, compressed corpus

S
iz

e,
 in

 G
B

Corpus
Index

Costs: Index size

0

5

10

15

20

25

30

35

40

45

Nutch BE

Ru
n 

tim
e,

 in
 h

ou
rs

Type Recognizer
Indexer

Costs: Index construction time



5

25

Novel applications:
Interactive Information Extraction

BE is fast enough to allow new 
interaction models

KnowItAll is a batch process
KnowItNow is interactive; approximates 
core of KnowItAll using a few BE queries

28

Relational Web Search
Consider that last slide for a sec:

It looks a lot like a database table
Can web-style search generate structured 
output, instead of just a list of docs?

29

Relational Web Search (2)
Modern search works treats docs as bags of 
words; no internal structure
Instead, we use the corpus to assemble a 
huge entity-relation graph

30

Relational Web Search (3)
We automatically extract it from the doc; it’s 
called the extraction graph
All searches are done over the E.G., not the 
original document set
Lets us perform various queries:

Qualified-list (“west coast liberal arts colleges”)
Unnamed-item (“tallest inactive volcano in Africa”)
Relationship (describe relation between Bill Clinton 
and Justice Ginsberg)
Tabular (database table of cities and capitals)



6

31

The Extraction Graph

“Is-A” edges come from KnowItAll
Predicate edges found by looking for 
certain linguistic patterns
From 90m docs, we have:

652m object-relation-object triples
227m nodes
544m edges

~71.7% of “Is-A” correct 
~44% of predicate edges correct

32

Searching

Perform “spreading activation” search on graph
Each edge has a “decay factor” that retards spread

33

Results: qualified-list

34

Results: tabular query

35

Thanks
We’re hiring!
Comments to mjc@cs.washington.edu

Questions?


