

Categorization (review)

• Given:

- A description of an instance, $x \in X$, where X is the *instance language* or *instance space*.
- A fixed set of categories: $C = \{c_1, c_2, \dots c_n\}$

• Determine:

- The category of x: $c(x) \in C$, where c(x) is a categorization function whose domain is X and whose range is C.

Learning for Categorization

- A *training example* is an instance *x*∈*X*, paired with its correct category *c*(*x*):
 <*x*, *c*(*x*)> for an unknown categorization function, *c*.
- Given a set of training examples, *D*.
- Find a hypothesized categorization function, *h*(*x*), such that:

 $\forall < x, c(x) > \in D : h(x) = c(x)$ Consistency

Sample Category Learning Problem • Instance language: <size, color, shape> - size \in {small, medium, large} - color \in {red, blue, green} - shape \in {square, circle, triangle} • *C* = {positive, negative} D: Example Size Color Shape Category 1 small red circle positive 2 large red circle positive 3 small red triangle negative 4 large blue circle negative

General Learning Issues

- Many hypotheses are usually consistent with the training data.
- Bias
 - Any criteria other than consistency with the training data that is used to select a hypothesis.
- Classification accuracy (% of instances classified correctly).
 - Measured on independent test data.
- Training time (efficiency of training algorithm).
- Testing time (efficiency of subsequent classification).

Generalization

- Hypotheses must generalize to correctly classify instances not in the training data.
- Simply memorizing training examples is a consistent hypothesis that does not generalize.
- Occam's razor:
 - Finding a *simple* hypothesis helps ensure generalization.

Text Categorization

- Assigning documents to a fixed set of categories, *e.g.*
- Web pages
 - Categories in search (see microsoft.com)
 - Yahoo-like classification
- Newsgroup Messages
 - Recommending
 - Spam filtering
- News articles
 - Personalized newspaper
- · Email messages
 - Routing
 - Prioritizing
 - Folderizing
 - spam filtering

Learning for Text Categorization

- Hard to construct text categorization functions.
- Learning Algorithms:
 - Bayesian (naïve)
 - Neural network
 - Relevance Feedback (Rocchio)
 - Rule based (C4.5, Ripper, Slipper)
 - Nearest Neighbor (case based)
 - Support Vector Machines (SVM)

Using Relevance Feedback (Rocchio)

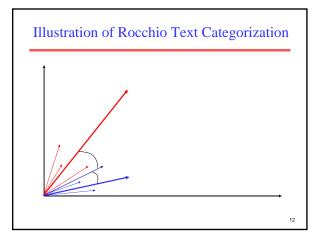
- Use standard TF/IDF weighted vectors to represent text documents (normalized by maximum term frequency).
- For each category, compute a *prototype* vector by summing the vectors of the training documents in the category.
- Assign test documents to the category with the closest prototype vector based on cosine similarity.

Rocchio Text Categorization Algorithm (Training) Assume the set of categories is $\{c_1, c_2,...,c_n\}$ For *i* from 1 to *n* let $\mathbf{p}_i = \langle 0, 0,..., 0 \rangle$ (*init. prototype vectors*) For each training example $\langle x, c(x) \rangle \in D$ Let **d** be the frequency normalized TF/IDF term vector for doc *x* Let i = j such that $(c_j = c(x))$ (sum all the document vectors in c_i to get \mathbf{p}_i) Let $\mathbf{p}_i = \mathbf{p}_i + \mathbf{d}$

Rocchio Text Categorization Algorithm (Test)

Given test document x Let **d** be the TF/IDF weighted term vector for x Let m = -2 (*init. maximum cosSim*) For *i* from 1 to *n*: (*compute similarity to prototype vector*) Let $s = cosSim(\mathbf{d}, \mathbf{p}_i)$ if s > mlet m = slet $m = c_i$ (*update most similar class prototype*) Return class r

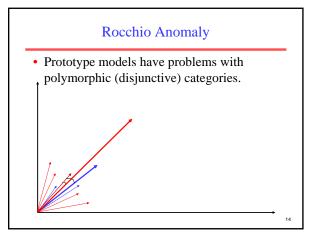
11



10

Rocchio Properties

- Does not guarantee a consistent hypothesis.
- Forms a simple generalization of the examples in each class (a *prototype*).
- Prototype vector does not need to be averaged or otherwise normalized for length since cosine similarity is insensitive to vector length.
- Classification is based on similarity to class prototypes.



Rocchio Time Complexity

- Note: The time to add two sparse vectors is proportional to minimum number of non-zero entries in the two vectors.
- Training Time: $O(|D|(L_d + |V_d|)) = O(|D| L_d)$ where L_d is the average length of a document in D and V_d is the average vocabulary size for a document in D.
- Test Time: $O(L_t + /C//V_t)$ where L_t is the average length of a test document and $|V_t|$ is the average vocabulary size for a test document.
- Assumes lengths of p_i vectors are computed and stored during training, allowing cosSim(d, p_i) to be computed in time proportional to the number of non-zero entries in d (i.e. /V_i/)

15

13

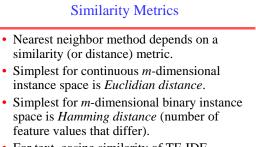
Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in *D*.
- Testing instance *x*:
 - Compute similarity between *x* and all examples in *D*.
 - Assign x the category of the most similar example in D.
- Does not explicitly compute a generalization or category prototypes.
- Also called:
- Case-based
- Memory-based
- Lazy learning

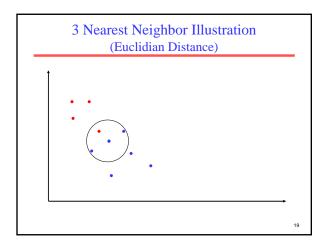
K Nearest-Neighbor

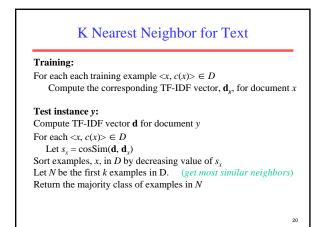
- Using only the closest example to determine categorization is subject to errors due to:
 - A single atypical example.
 - Noise (i.e. error) in the category label of a single training example.
- More robust alternative is to find the *k* most-similar examples and return the majority category of these *k* examples.
- Value of *k* is typically odd to avoid ties, 3 and 5 are most common.

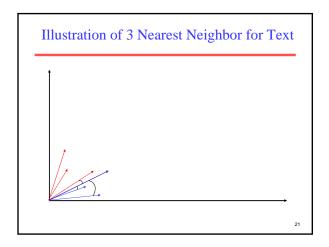
17

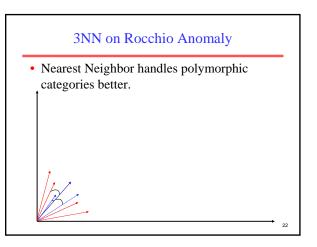


• For text, cosine similarity of TF-IDF weighted vectors is typically most effective.









Nearest Neighbor Time Complexity

- Training Time: $O(|D| L_d)$ to compose TF-IDF vectors.
- Testing Time: $O(L_t + |D|/V_t|)$ to compare to all training vectors.
 - Assumes lengths of d_x vectors are computed and stored during training, allowing cosSim(d, d_x) to be computed in time proportional to the number of non-zero entries in d (i.e. /V_i/)

23

• Testing time can be high for large training sets.

Nearest Neighbor with Inverted Index
Determining *k* nearest neighbors is the same as determining the *k* best retrievals using the test document as a query to a database of training documents.
Use standard VSR inverted index methods to find the *k* nearest neighbors.
Testing Time: O(B/V_i) where *B* is the average number of training documents in which a test-document word appears.
Therefore, overall classification is O(L_t + B/V_t) – Typically B << |D|