Text Categorization

Categorization (review)

e Given:
— A description of an instance, xe X, where X is
the instance language or instance space.
— A fixed set of categories:
C={c;, C,,...C.}
 Determine:
— The category of x: ¢(x)C, where c(x) is a
categorization function whose domain is X and
whose range is C.

Learning for Categorization

» A training example is an instance xeX,
paired with its correct category c(x):
<X, ¢(x)> for an unknown categorization
function, c.

 Given a set of training examples, D.
* Find a hypothesized categorization function,
h(x), such that:
V < X,c(x) >e D:h(x)=c(x)
Consistency

Sample Category Learning Problem

* Instance language: <size, color, shape>
- size e {small, medium, large}
— color € {red, blue, green}
— shape e {square, circle, triangle}

e C ={positive, negative}

* D:

Example |Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle | negative
4 large blue circle negative

General Learning Issues

» Many hypotheses are usually consistent with the
training data.
* Bias
— Any criteria other than consistency with the training
data that is used to select a hypothesis.

* Classification accuracy (% of instances classified
correctly).
— Measured on independent test data.

* Training time (efficiency of training algorithm).

 Testing time (efficiency of subsequent
classification).

Generalization

» Hypotheses must generalize to correctly
classify instances not in the training data.
 Simply memorizing training examples is a

consistent hypothesis that does not
generalize.
» Occam’s razor:

— Finding a simple hypothesis helps ensure
generalization.




Text Categorization

Assigning documents to a fixed set of categories, e.g.
Web pages

— Categories in search (see microsoft.com)
- Yahoo-like classification

Newsgroup Messages

- Recommending

— Spam filtering

News articles

— Personalized newspaper

Email messages

— Routing

— Prioritizing

- Folderizing

— spam filtering

Learning for Text Categorization

 Hard to construct text categorization functions.
e Learning Algorithms:

— Bayesian (naive)

— Neural network

— Relevance Feedback (Rocchio)
— Rule based (C4.5, Ripper, Slipper)
— Nearest Neighbor (case based)

— Support Vector Machines (SVM)

Using Relevance Feedback (Rocchio)

* Use standard TF/IDF weighted vectors to
represent text documents (normalized by
maximum term frequency).

* For each category, compute a prototype vector by
summing the vectors of the training documents in
the category.

< Assign test documents to the category with the
closest prototype vector based on cosine
similarity.

Rocchio Text Categorization Algorithm
(Training)

Assume the set of categories is {c;, C,,...C.}
Forifrom 1tonletp; =<0,0,...,0> (init. prototype vectors)
For each training example <x, c(x)> € D
Let d be the frequency normalized TF/IDF term vector for doc x
Leti= j suchthat (c;=c(x))
(sum all the document vectors in c; to get p;)
Let Pi =P +d

Rocchio Text Categorization Algorithm
(Test)

Given test document x
Let d be the TF/IDF weighted term vector for x
Letm=-2  (init. maximum cosSim)
For i from 1 to n:
(compute similarity to prototype vector)
Let s = cosSim(d, p;)
ifs>m
letm=s
let r = ¢; (update most similar class prototype)
Return class r

Illustration of Rocchio Text Categorization




Rocchio Properties

* Does not guarantee a consistent hypothesis.

» Forms a simple generalization of the
examples in each class (a prototype).

* Prototype vector does not need to be

averaged or otherwise normalized for length

since cosine similarity is insensitive to

vector length.

Classification is based on similarity to class

prototypes.

Rocchio Anomaly

* Prototype models have problems with
polymorphic (disjunctive) categories.

Rocchio Time Complexity

» Note: The time to add two sparse vectors is
proportional to minimum number of non-zero
entries in the two vectors.

* Training Time: O(|D|(Ly + [V4))) = O(|D| Ly)
where L is the average length of a document in D and V,
is the average vocabulary size for a document in D.

o Test Time: O(L,+ |C||V{])
where L, is the average length of a test document and |V, |
is the average vocabulary size for a test document.

— Assumes lengths of p; vectors are computed and stored during
training, allowing cosSim(d, p;) to be computed in time
proportional to the number of non-zero entries in d (i.e. |V])

Nearest-Neighbor Learning Algorithm

 Learning is just storing the representations of the
training examples in D.
Testing instance x:
— Compute similarity between x and all examples in D.
— Assign x the category of the most similar example in D.
 Does not explicitly compute a generalization or
category prototypes.
* Also called:
— Case-based
— Memory-based
— Lazy learning

K Nearest-Neighbor

 Using only the closest example to determine
categorization is subject to errors due to:
— A single atypical example.

— Noise (i.e. error) in the category label of a
single training example.

* More robust alternative is to find the k
most-similar examples and return the
majority category of these k examples.

* Value of k is typically odd to avoid ties, 3
and 5 are most common.

Similarity Metrics

Nearest neighbor method depends on a
similarity (or distance) metric.

Simplest for continuous m-dimensional
instance space is Euclidian distance.
Simplest for m-dimensional binary instance
space is Hamming distance (number of
feature values that differ).

* For text, cosine similarity of TF-IDF
weighted vectors is typically most effective.




3 Nearest Neighbor Illustration
(Euclidian Distance)

K Nearest Neighbor for Text

Training:
For each each training example <x, c(x)> € D
Compute the corresponding TF-IDF vector, d,, for document x

Test instance y:
Compute TF-IDF vector d for document y
For each <x, c(x)> € D
Let s, = cosSim(d, d,)
Sort examples, x, in D by decreasing value of s,
Let N be the first k examples in D.  (get most similar neighbors)
Return the majority class of examples in N

Illustration of 3 Nearest Neighbor for Text

3NN on Rocchio Anomaly

 Nearest Neighbor handles polymorphic
categories better.

Nearest Neighbor Time Complexity

* Training Time: O(|D| L) to compose
TF-IDF vectors.

* Testing Time: O(L;+ |D||V]) to compare to
all training vectors.

— Assumes lengths of d, vectors are computed and stored
during training, allowing cosSim(d, d,) to be computed
in time proportional to the number of non-zero entries
ind (i.e. |V

* Testing time can be high for large training
sets.

Nearest Neighbor with Inverted Index

 Determining k nearest neighbors is the same as
determining the k best retrievals using the test
document as a query to a database of training
documents.

* Use standard VSR inverted index methods to find
the k nearest neighbors.

» Testing Time: O(B|V|)
where B is the average number of training documents in
which a test-document word appears.

* Therefore, overall classification is O(L, + B|V,|)
— Typically B << |D|




