
1

1

Text Categorization

2

Categorization (review)

• Given:
– A description of an instance, x∈X, where X is

the instance language or instance space.
– A fixed set of categories:

C={c1, c2,…cn}
• Determine:

– The category of x: c(x)∈C, where c(x) is a
categorization function whose domain is X and
whose range is C.

3

Learning for Categorization
• A training example is an instance x∈X,

paired with its correct category c(x):
<x, c(x)> for an unknown categorization
function, c.

• Given a set of training examples, D.
• Find a hypothesized categorization function,

h(x), such that:
)()(:)(, xcxhDxcx =∈><∀

Consistency
4

Sample Category Learning Problem

• Instance language: <size, color, shape>
– size ∈ {small, medium, large}
– color ∈ {red, blue, green}
– shape ∈ {square, circle, triangle}

• C = {positive, negative}
• D:

negativetriangleredsmall3

positivecircleredlarge2

positivecircleredsmall1

negativecirclebluelarge4

CategoryShapeColorSizeExample

5

General Learning Issues

• Many hypotheses are usually consistent with the
training data.

• Bias
– Any criteria other than consistency with the training

data that is used to select a hypothesis.
• Classification accuracy (% of instances classified

correctly).
– Measured on independent test data.

• Training time (efficiency of training algorithm).
• Testing time (efficiency of subsequent

classification).

6

Generalization

• Hypotheses must generalize to correctly
classify instances not in the training data.

• Simply memorizing training examples is a
consistent hypothesis that does not
generalize.

• Occam’s razor:
– Finding a simple hypothesis helps ensure

generalization.

2

7

Text Categorization

• Assigning documents to a fixed set of categories, e.g.
• Web pages

– Categories in search (see microsoft.com)
– Yahoo-like classification

• Newsgroup Messages
– Recommending
– Spam filtering

• News articles
– Personalized newspaper

• Email messages
– Routing
– Prioritizing
– Folderizing
– spam filtering 8

Learning for Text Categorization

• Hard to construct text categorization functions.
• Learning Algorithms:

– Bayesian (naïve)
– Neural network
– Relevance Feedback (Rocchio)
– Rule based (C4.5, Ripper, Slipper)
– Nearest Neighbor (case based)
– Support Vector Machines (SVM)

9

Using Relevance Feedback (Rocchio)

• Use standard TF/IDF weighted vectors to
represent text documents (normalized by
maximum term frequency).

• For each category, compute a prototype vector by
summing the vectors of the training documents in
the category.

• Assign test documents to the category with the
closest prototype vector based on cosine
similarity.

10

Rocchio Text Categorization Algorithm
(Training)

Assume the set of categories is {c1, c2,…cn}
For i from 1 to n let pi = <0, 0,…,0> (init. prototype vectors)
For each training example <x, c(x)> ∈ D

Let d be the frequency normalized TF/IDF term vector for doc x
Let i = j such that (cj = c(x))
(sum all the document vectors in ci to get pi)
Let pi = pi + d

11

Rocchio Text Categorization Algorithm
(Test)

Given test document x
Let d be the TF/IDF weighted term vector for x
Let m = –2 (init. maximum cosSim)
For i from 1 to n:

(compute similarity to prototype vector)
Let s = cosSim(d, pi)
if s > m

let m = s
let r = ci (update most similar class prototype)

Return class r

12

Illustration of Rocchio Text Categorization

3

13

Rocchio Properties

• Does not guarantee a consistent hypothesis.
• Forms a simple generalization of the

examples in each class (a prototype).
• Prototype vector does not need to be

averaged or otherwise normalized for length
since cosine similarity is insensitive to
vector length.

• Classification is based on similarity to class
prototypes.

14

Rocchio Anomaly

• Prototype models have problems with
polymorphic (disjunctive) categories.

15

Rocchio Time Complexity

• Note: The time to add two sparse vectors is
proportional to minimum number of non-zero
entries in the two vectors.

• Training Time: O(|D|(Ld + |Vd|)) = O(|D| Ld)
where Ld is the average length of a document in D and Vd
is the average vocabulary size for a document in D.

• Test Time: O(Lt + |C||Vt|)
where Lt is the average length of a test document and |Vt |
is the average vocabulary size for a test document.
– Assumes lengths of pi vectors are computed and stored during

training, allowing cosSim(d, pi) to be computed in time
proportional to the number of non-zero entries in d (i.e. |Vt|)

16

Nearest-Neighbor Learning Algorithm

• Learning is just storing the representations of the
training examples in D.

• Testing instance x:
– Compute similarity between x and all examples in D.
– Assign x the category of the most similar example in D.

• Does not explicitly compute a generalization or
category prototypes.

• Also called:
– Case-based
– Memory-based
– Lazy learning

17

K Nearest-Neighbor

• Using only the closest example to determine
categorization is subject to errors due to:
– A single atypical example.
– Noise (i.e. error) in the category label of a

single training example.
• More robust alternative is to find the k

most-similar examples and return the
majority category of these k examples.

• Value of k is typically odd to avoid ties, 3
and 5 are most common.

18

Similarity Metrics

• Nearest neighbor method depends on a
similarity (or distance) metric.

• Simplest for continuous m-dimensional
instance space is Euclidian distance.

• Simplest for m-dimensional binary instance
space is Hamming distance (number of
feature values that differ).

• For text, cosine similarity of TF-IDF
weighted vectors is typically most effective.

4

19

3 Nearest Neighbor Illustration
(Euclidian Distance)

.. .
.

. .
. .
...

20

K Nearest Neighbor for Text

Training:
For each each training example <x, c(x)> ∈ D

Compute the corresponding TF-IDF vector, dx, for document x

Test instance y:
Compute TF-IDF vector d for document y
For each <x, c(x)> ∈ D

Let sx = cosSim(d, dx)
Sort examples, x, in D by decreasing value of sx
Let N be the first k examples in D. (get most similar neighbors)
Return the majority class of examples in N

21

Illustration of 3 Nearest Neighbor for Text

22

3NN on Rocchio Anomaly

• Nearest Neighbor handles polymorphic
categories better.

23

Nearest Neighbor Time Complexity

• Training Time: O(|D| Ld) to compose
TF-IDF vectors.

• Testing Time: O(Lt + |D||Vt|) to compare to
all training vectors.
– Assumes lengths of dx vectors are computed and stored

during training, allowing cosSim(d, dx) to be computed
in time proportional to the number of non-zero entries
in d (i.e. |Vt|)

• Testing time can be high for large training
sets.

24

Nearest Neighbor with Inverted Index

• Determining k nearest neighbors is the same as
determining the k best retrievals using the test
document as a query to a database of training
documents.

• Use standard VSR inverted index methods to find
the k nearest neighbors.

• Testing Time: O(B|Vt|)
where B is the average number of training documents in
which a test-document word appears.

• Therefore, overall classification is O(Lt + B|Vt|)
– Typically B << |D|

