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Text Categorization
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Categorization (review)

• Given:
– A description of an instance, x∈X, where X is 

the instance language or instance space.
– A fixed set of categories:                          

C={c1, c2,…cn}
• Determine:

– The category of x: c(x)∈C, where c(x) is a 
categorization function whose domain is X and 
whose range is C.
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Learning for Categorization
• A training example is an instance x∈X, 

paired with its correct category c(x):         
<x, c(x)> for an unknown categorization 
function, c. 

• Given a set of training examples, D.
• Find a hypothesized categorization function, 

h(x), such that:
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Consistency
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Sample Category Learning Problem

• Instance language: <size, color, shape>
– size ∈ {small, medium, large}
– color ∈ {red, blue, green}
– shape ∈ {square, circle, triangle}

• C = {positive, negative}
• D:

negativetriangleredsmall3

positivecircleredlarge2

positivecircleredsmall1

negativecirclebluelarge4

CategoryShapeColorSizeExample
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General Learning Issues

• Many hypotheses are usually consistent with the 
training data.

• Bias
– Any criteria other than consistency with the training 

data that is used to select a hypothesis.
• Classification accuracy (% of instances classified 

correctly).
– Measured on independent test data.

• Training time (efficiency of training algorithm).
• Testing time (efficiency of subsequent 

classification).
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Generalization

• Hypotheses must generalize to correctly 
classify instances not in the training data.

• Simply memorizing training examples is a 
consistent hypothesis that does not 
generalize.

• Occam’s razor:
– Finding a simple hypothesis helps ensure 

generalization.
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Text Categorization

• Assigning documents to a fixed set of categories, e.g.
• Web pages 

– Categories in search (see microsoft.com)
– Yahoo-like classification

• Newsgroup Messages 
– Recommending
– Spam filtering

• News articles 
– Personalized newspaper

• Email messages 
– Routing
– Prioritizing 
– Folderizing
– spam filtering 8

Learning for Text Categorization

• Hard to construct text categorization functions.
• Learning Algorithms:

– Bayesian (naïve)
– Neural network
– Relevance Feedback (Rocchio)
– Rule based (C4.5, Ripper, Slipper)
– Nearest Neighbor (case based)
– Support Vector Machines (SVM)
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Using Relevance Feedback (Rocchio)

• Use standard TF/IDF weighted vectors to 
represent text documents (normalized by 
maximum term frequency).

• For each category, compute a prototype vector by 
summing the vectors of the training documents in 
the category.

• Assign test documents to the category with the 
closest prototype vector based on cosine 
similarity.
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Rocchio Text Categorization Algorithm
(Training)

Assume the set of categories is {c1, c2,…cn}
For i from 1 to n let pi = <0, 0,…,0>  (init. prototype vectors)
For each training example <x, c(x)> ∈ D

Let d be the frequency normalized TF/IDF term vector for doc x
Let i =  j such that   (cj = c(x))
(sum all the document vectors in ci to get pi)
Let pi = pi + d     
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Rocchio Text Categorization Algorithm
(Test)

Given test document x
Let d be the TF/IDF weighted term vector for x
Let m = –2      (init. maximum cosSim)
For i from 1 to n:

(compute similarity to prototype vector)
Let s = cosSim(d, pi)
if s > m

let m = s
let r = ci (update most similar class prototype)

Return class r
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Illustration of Rocchio Text Categorization
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Rocchio Properties 

• Does not guarantee a consistent hypothesis.
• Forms a simple generalization of the 

examples in each class (a prototype).
• Prototype vector does not need to be 

averaged or otherwise normalized for length 
since cosine similarity is insensitive to 
vector length.

• Classification is based on similarity to class 
prototypes.
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Rocchio Anomaly   

• Prototype models have problems with 
polymorphic (disjunctive) categories.
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Rocchio Time Complexity

• Note: The time to add two sparse vectors is 
proportional to minimum number of non-zero 
entries in the two vectors.

• Training Time:  O(|D|(Ld + |Vd|)) = O(|D| Ld)   
where Ld is the average length of a document in D and Vd
is the average vocabulary size for a document in D.

• Test Time: O(Lt + |C||Vt|)                                 
where Lt  is the average length of a test document and |Vt | 
is the average vocabulary size for a test document.
– Assumes lengths of pi vectors are computed and stored during 

training, allowing cosSim(d, pi) to be computed  in time 
proportional to the number of non-zero entries in d (i.e. |Vt|)
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Nearest-Neighbor Learning Algorithm

• Learning is just storing the representations of the 
training examples in D.

• Testing instance x:
– Compute similarity between x and all examples in D.
– Assign x the category of the most similar example in D.

• Does not explicitly compute a generalization or 
category prototypes.

• Also called:
– Case-based
– Memory-based
– Lazy learning
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K Nearest-Neighbor

• Using only the closest example to determine 
categorization is subject to errors due to:
– A single atypical example. 
– Noise (i.e. error) in the category label of a 

single training example.
• More robust alternative is to find the k

most-similar examples and return the 
majority category of these k examples.

• Value of k is typically odd to avoid ties, 3 
and 5 are most common.
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Similarity Metrics

• Nearest neighbor method depends on a 
similarity (or distance) metric.

• Simplest for continuous m-dimensional 
instance space is Euclidian distance.

• Simplest for m-dimensional binary instance 
space is Hamming distance (number of 
feature values that differ).

• For text, cosine similarity of TF-IDF 
weighted vectors is typically most effective.
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3 Nearest Neighbor Illustration
(Euclidian Distance)
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K Nearest Neighbor for Text

Training:
For each each training example <x, c(x)> ∈ D

Compute the corresponding TF-IDF vector, dx, for document x

Test instance y:
Compute TF-IDF vector d for document y
For each <x, c(x)> ∈ D

Let sx = cosSim(d, dx)
Sort examples, x, in D by decreasing value of sx
Let N be the first k examples in D.     (get most similar neighbors)
Return the majority class of examples in N
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Illustration of 3 Nearest Neighbor for Text
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3NN on Rocchio Anomaly   

• Nearest Neighbor handles polymorphic 
categories better. 
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Nearest Neighbor Time Complexity

• Training Time: O(|D| Ld) to compose        
TF-IDF vectors.

• Testing Time: O(Lt + |D||Vt|) to compare to 
all training vectors.
– Assumes lengths of dx vectors are computed and stored 

during training, allowing cosSim(d, dx) to be computed  
in time proportional to the number of non-zero entries 
in d (i.e. |Vt|)

• Testing time can be high for large training 
sets.
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Nearest Neighbor with Inverted Index

• Determining k nearest neighbors is the same as 
determining the k best retrievals using the test 
document as a query to a database of training 
documents.

• Use standard VSR inverted index methods to find 
the k nearest neighbors.

• Testing Time: O(B|Vt|)                                     
where B is the average number of training documents in 
which a test-document word appears.

• Therefore, overall classification is O(Lt + B|Vt|) 
– Typically B << |D|


