# MapReduce: Simplified Data Processing on Large Clusters

CSE 454

Slides based on those by Jeff Dean, Sanjay Ghemawat, Google, Inc.

### Motivation

Large-Scale Data Processing
 Want to use 1000s of CPUs
 But don't want hassle of *managing* things

#### MapReduce provides

- Automatic parallelization & distribution
- Fault tolerance
- $\square$  I/O scheduling
- Monitoring & status updates

# Map/Reduce

- Map/Reduce
  - Programming model from Lisp
  - and other functional languages)
- Many problems can be phrased this way
- Easy to distribute across nodes
- Nice retry/failure semantics



# Map/Reduce ala Google

- map(key, val) is run on each item in set
  emits new-key / new-val pairs
- reduce(key, vals) is run for each unique key emitted by map()
   emits final output











Map

Reduce





# Execution

- How is this distributed?
  - Partition input key/value pairs into chunks, run map() tasks in parallel
  - 2. After all map()s are complete, consolidate all emitted values for each unique emitted key
  - 3. Now partition space of output map keys, and run reduce() in parallel
- If map() or reduce() fails, reexecute!



# Fault Tolerance / Workers

#### Handled via re-execution

- Detect failure via periodic heartbeats
- Re-execute completed + in-progress map tasks
  Why????
- Re-execute in progress *reduce* tasks

Task completion committed through master
 Robust: lost 1600/1800 machines once → finished ok
 Semantics in presence of failures: see paper

### Master Failure

- Could handle, ... ?
- But don't yet
  - (master failure unlikely)

### Refinement: Redundant Execution

Slow workers significantly delay completion time

- Other jobs consuming resources on machine
- Bad disks w/ soft errors transfer data slowly
- Weird things: processor caches disabled (!!)

#### Solution: Near end of phase, spawn backup tasks

Whichever one finishes first "wins"

Dramatically shortens job completion time

### Refinement: Locality Optimization

#### Master scheduling policy:

- $\hfill \square$  Asks GFS for locations of replicas of input file blocks
- Map tasks typically split into 64MB (GFS block size)
- $\hfill \square$  Map tasks scheduled so GFS input block replica are on same machine or same rack

#### Effect

Thousands of machines read input at local disk speed
 Without this, rack switches limit read rate

### Refinement Skipping Bad Records

- Map/Reduce functions sometimes fail for particular inputs
  - $\hfill\square$  Best solution is to debug & fix
  - Not always possible ~ third-party source libraries
    On segmentation fault:
    - Send UDP packet to master from signal handler
      Include sequence number of record being processed
  - If master sees two failures for same record:
    Next worker is told to skip the record

# Other Refinements

- Sorting guarantees
  within each reduce partition
- Compression of intermediate data
- Combiner
  Useful for saving network bandwidth
- Local execution for debugging/testing
- User-defined counters

# Performance

- Tests run on cluster of 1800 machines:
- 4 GB of memory
- $\hfill\square$  Dual-processor 2 GHz Xeons with Hyperthreading
- Dual 160 GB IDE disks
- Gigabit Ethernet per machine
- $\hfill \square$  Bisection bandwidth approximately 100 Gbps

#### Two benchmarks:

MR\_GrepScan 1010 100-byte records to extract records matching a rare pattern (92K matching records)

MR\_SortSort 1010 100-byte records (modeled after TeraSort benchmark)



Startup overhead is significant for short jobs





| Usage in Aug 2004                     |             |
|---------------------------------------|-------------|
| Number of jobs                        | 29,423      |
| Average job completion time           | 634 secs    |
| Machine days used                     | 79,186 days |
| Input data read                       | 3,288 TB    |
| Intermediate data produced            | 758 TB      |
| Output data written                   | 193 TB      |
| Average worker machines per job       | 157         |
| Average worker deaths per job         | 1.2         |
| Average map tasks per job             | 3,351       |
| Average reduce tasks per job          | 55          |
| Unique map implementations            | 395         |
| Unique <i>reduce</i> implementations  | 269         |
| Unique <i>map/reduce</i> combinations | 426         |



### Conclusions

- MapReduce proven to be useful abstraction
- Greatly simplifies large-scale computations
- Fun to use:
  - focus on problem,
  - Iet library deal w/ messy details