
1

MapReduce:
Simplified Data Processing on

Large Clusters
CSE 454

Slides based on those by Jeff Dean, Sanjay Ghemawat, Google, Inc.

Motivation

Large-Scale Data Processing
Want to use 1000s of CPUs
▫ But don’t want hassle of managing things

MapReduce provides
Automatic parallelization & distribution
Fault tolerance
I/O scheduling
Monitoring & status updates

Map/Reduce
Map/Reduce

Programming model from Lisp
(and other functional languages)

Many problems can be phrased this way
Easy to distribute across nodes
Nice retry/failure semantics

Map in Lisp (Scheme)
(map f list [list2 list3 …])

(map square ‘(1 2 3 4))
(1 4 9 16)

(reduce + ‘(1 4 9 16))
(+ 16 (+ 9 (+ 4 1)))
30

(reduce + (map square (map – l1 l2))))

Unary operator

Binary operator

Map/Reduce ala Google
map(key, val) is run on each item in set

emits new-key / new-val pairs

reduce(key, vals) is run for each unique key
emitted by map()

emits final output

count words in docs
Input consists of (url, contents) pairs

map(key=url, val=contents):
▫ For each word w in contents, emit (w, “1”)

reduce(key=word, values=uniq_counts):
▫ Sum all “1”s in values list
▫ Emit result “(word, sum)”

2

Count,
Illustrated

map(key=url, val=contents):
For each word w in contents, emit (w, “1”)

reduce(key=word, values=uniq_counts):
Sum all “1”s in values list
Emit result “(word, sum)”

see bob throw
see spot run

see 1
bob 1
run 1
see 1
spot 1
throw 1

bob 1
run 1
see 2
spot 1
throw 1

Grep
Input consists of (url+offset, single line)
map(key=url+offset, val=line):
▫ If contents matches regexp, emit (line, “1”)

reduce(key=line, values=uniq_counts):
▫ Don’t do anything; just emit line

Reverse Web-Link Graph
Map

For each URL linking to target, …
Output <target, source> pairs

Reduce
Concatenate list of all source URLs
Outputs: <target, list (source)> pairs

Inverted Index
Map

Reduce

Example uses:

...... ...

statistical machine
translation machine learning document clustering

inverted index construction web access log stats term-vector / host
web link-graph reversal distributed sort distributed grep

Model is Widely Applicable
MapReduce Programs In Google Source Tree

Typical cluster:

• 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory
• Limited bisection bandwidth
• Storage is on local IDE disks
• GFS: distributed file system manages data (SOSP'03)
• Job scheduling system: jobs made up of tasks,

scheduler assigns tasks to machines

Implementation is a C++ library linked into user programs

Implementation Overview

3

Execution
How is this distributed?

1. Partition input key/value pairs into chunks,
run map() tasks in parallel

2. After all map()s are complete, consolidate all
emitted values for each unique emitted key

3. Now partition space of output map keys, and
run reduce() in parallel

If map() or reduce() fails, reexecute!

Job Processing

JobTracker

TaskTracker 0 TaskTracker 1 TaskTracker 2

TaskTracker 3 TaskTracker 4 TaskTracker 5

1. Client submits “grep” job, indicating code
and input files

2. JobTracker breaks input file into k chunks,
(in this case 6). Assigns work to ttrackers.

3. After map(), tasktrackers exchange map-
output to build reduce() keyspace

4. JobTracker breaks reduce() keyspace into
m chunks (in this case 6). Assigns work.

5. reduce() output may go to NDFS

“grep”

Execution Parallel Execution

Task Granularity & Pipelining
Fine granularity tasks: map tasks >> machines

Minimizes time for fault recovery
Can pipeline shuffling with map execution
Better dynamic load balancing

Often use 200,000 map & 5000 reduce tasks
Running on 2000 machines

4

5

Handled via re-execution
Detect failure via periodic heartbeats
Re-execute completed + in-progress map tasks
▫ Why????
Re-execute in progress reduce tasks
Task completion committed through master

Robust: lost 1600/1800 machines once finished ok
Semantics in presence of failures: see paper

Fault Tolerance / Workers Master Failure
Could handle, … ?
But don't yet

(master failure unlikely)

6

Slow workers significantly delay completion time
Other jobs consuming resources on machine
Bad disks w/ soft errors transfer data slowly
Weird things: processor caches disabled (!!)

Solution: Near end of phase, spawn backup tasks
Whichever one finishes first "wins"

Dramatically shortens job completion time

Refinement:
Redundant Execution

Refinement:
Locality Optimization

Master scheduling policy:
Asks GFS for locations of replicas of input file blocks
Map tasks typically split into 64MB (GFS block size)
Map tasks scheduled so GFS input block replica are on
same machine or same rack

Effect
Thousands of machines read input at local disk speed
▫ Without this, rack switches limit read rate

Refinement
Skipping Bad Records

Map/Reduce functions sometimes fail for
particular inputs

Best solution is to debug & fix
▫ Not always possible ~ third-party source libraries

On segmentation fault:
▫ Send UDP packet to master from signal handler
▫ Include sequence number of record being

processed
If master sees two failures for same record:
▫ Next worker is told to skip the record

Sorting guarantees
within each reduce partition

Compression of intermediate data
Combiner

Useful for saving network bandwidth
Local execution for debugging/testing
User-defined counters

Other Refinements

Tests run on cluster of 1800 machines:
4 GB of memory
Dual-processor 2 GHz Xeons with Hyperthreading
Dual 160 GB IDE disks
Gigabit Ethernet per machine
Bisection bandwidth approximately 100 Gbps

Two benchmarks:
MR_GrepScan 1010 100-byte records to extract records

matching a rare pattern (92K matching records)

MR_SortSort 1010 100-byte records (modeled after TeraSort
benchmark)

Performance MR_Grep

Locality optimization helps:
1800 machines read 1 TB at peak ~31 GB/s
W/out this, rack switches would limit to 10 GB/s

Startup overhead is significant for short
jobs

7

Normal No backup tasks 200 processes killed

MR_Sort

Backup tasks reduce job completion time a lot!
System deals well with failures

Rewrote Google's production indexing
System using MapReduce

Set of 10, 14, 17, 21, 24 MapReduce
operations
New code is simpler, easier to understand
▫ 3800 lines C++ 700

MapReduce handles failures, slow machines
Easy to make indexing faster
▫ add more machines

Experience

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days

Input data read 3,288 TB
Intermediate data produced 758 TB
Output data written 193 TB

Average worker machines per job 157
Average worker deaths per job 1.2
Average map tasks per job 3,351
Average reduce tasks per job 55

Unique map implementations 395
Unique reduce implementations 269
Unique map/reduce combinations 426

Usage in Aug 2004 Related Work
Programming model inspired by functional
language primitives
Partitioning/shuffling similar to many large-scale
sorting systems

NOW-Sort ['97]
Re-execution for fault tolerance

BAD-FS ['04] and TACC ['97]
Locality optimization has parallels with Active
Disks/Diamond work

Active Disks ['01], Diamond ['04]
Backup tasks similar to Eager Scheduling in
Charlotte system

Charlotte ['96]
Dynamic load balancing solves similar problem as
River's distributed queues

River ['99]

Conclusions
MapReduce proven to be useful abstraction

Greatly simplifies large-scale computations

Fun to use:
focus on problem,
let library deal w/ messy details

