
1

Google File System

CSE 454

From paper by Ghemawat, Gobioff & Leung

The Need
• Component failures normal

– Due to clustered computing
• Files are huge

– By traditional standards (many TB)
• Most mutations are mutations

– Not random access overwrite
• Co-Designing apps & file system

• Typical: 1000 nodes & 300 TB

Desiderata
• Must monitor & recover from comp failures
• Modest number of large files
• Workload

– Large streaming reads + small random reads
– Many large sequential writes

• Random access overwrites don’t need to be efficient
• Need semantics for concurrent appends
• High sustained bandwidth

– More important than low latency

Interface

• Familiar
– Create, delete, open, close, read, write

• Novel
– Snapshot

• Low cost
– Record append

• Atomicity with multiple concurrent writes

Architecture

Client

Client

Client

Client

Master

Many Many{
Chunk
Server

Chunk
Server

Chunk
Server

}

metadata only

data only

Architecture

• Store all files
– In fixed-size chucks

• 64 MB
• 64 bit unique handle

• Triple redundancy

Chunk
Server

Chunk
Server

Chunk
Server

2

Architecture
Master

• Stores all metadata
– Namespace
– Access-control information
– Chunk locations
– ‘Lease’ management

• Heartbeats
• Having one master global knowledge

– Allows better placement / replication
– Simplifies design

Architecture

Client

Client

Client

Client

• GFS code implements API
• Cache only metadata

Using fixed chunk size, translate filename &
byte offset to chunk index.
Send request to master

Replies with chunk handle & location of chunkserver
replicas (including which is ‘primary’)

Cache info
using filename & chunk index as key

Request data from nearest chunkserver
“chunkhandle & index into chunk”

3

No need to talk more
About this 64MB chunk
Until cached info expires or file reopened

Often initial request asks about
Sequence of chunks

Metadata

• Master stores three types
– File & chunk namespaces
– Mapping from files chunks
– Location of chunk replicas

• Stored in memory
• Kept persistent thru logging

Consistency Model

Consistent = all clients see same data

Consistency Model

Defined = consistent + clients see full effect
of mutation
Key: all replicas must process chunk-mutation
requests in same order

Consistency Model

Different clients may see different data

4

Implications
• Apps must rely on appends, not overwrites
• Must write records that

– Self-validate
– Self-identify

• Typical uses
– Single writer writes file from beginning to end,

then renames file (or checkpoints along way)
– Many writers concurrently append

• At-least-once semantics ok
• Reader deal with padding & duplicates

Leases & Mutation Order
• Objective

– Ensure data consistent & defined
– Minimize load on master

• Master grants ‘lease’ to one replica
– Called ‘primary’ chunkserver

• Primary serializes all mutation requests
– Communicates order to replicas

Write Control & Dataflow Atomic Appends
• As in last slide, but…
• Primary also checks to see if append spills

over into new chunk
– If so, pads old chunk to full extent
– Tells secondary chunk-servers to do the same
– Tells client to try append again on next chunk

• Usually works because
– max(append-size) < ¼ chunk-size [API rule]
– (meanwhile other clients may be appending)

Other Issues
• Fast snapshot
• Master operation

– Namespace management & locking
– Replica placement & rebalancing
– Garbage collection (deleted / stale files)
– Detecting stale replicas

Master Replication

• Master log & checkpoints replicated
• Outside monitor watches master livelihood

– Starts new master process as needed
• Shadow masters

– Provide read-access when primary is down
– Lag state of true master

5

Read Performance Write Performance

Record-Append Performance

