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The Need

+ Component failures normal

- Due to clustered computing

* Files are huge

- By traditional standards (many TB)

+ Most mutations are mutations

- Not random access overwrite

+ Co-Desighing apps & file system

* Typical: 1000 nodes & 300 TB

Desiderata

* Must monitor & recover from comp failures
* Modest humber of large files
* Workload

- Large streaming reads + small random reads

- Many large sequential writes

+ Random access overwrites don't need to be efficient

* Need semantics for concurrent appends
* High sustained bandwidth

- More important than low latency

Interface

+ Familiar

- Create, delete, open, close, read, write

* Novel

- Shapshot
* Low cost
- Record append

+ Atomicity with multiple concurrent writes

Archi‘rec‘rure

Client Chunk
Server
Many { Client Many

3

9

[ X X ) QQ
\I~

Chunk
Client Server
data only o
°
°
Client Chunk
Server

Architecture

- Store all files

- In fixed-size chucks Chunk
- 64 MB Server
+ 64 bit unique handle

* Triple redundancy Chunk

Server

Chunk
Server




Architecture

* Stores all metadata
- Namespace
- Access-control information
- Chunk locations
- 'Lease’ management
* Heartbeats
* Having one master < global knowledge
- Allows better placement / replication
- Simplifies design

Architecture

Using fixed chunk size, translate filename &
byte offset to chunk index.
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Cache info

using filename & chunk index as key
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No need to talk more
About this 64MB chunk
Until cached info expires or file reopened
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Often initial request asks about
Sequence of chunks

i Application ifile name, clunk index) | GFS master = [foolbar

| GFS client File nmmespace cliunk 2efd
T (chumk handle, AN ;

chunk locations) |

]]lhtnmlmh to chunkserver

“hunkserver sta
{chunk handle, byte range) Clamimerver sine

GFS chunkserver

{ GFS chunkserver |

Linux file system |

chunk data
b Linux file system

b~ kBb-

Metadata

* Master stores three types
- File & chunk namespaces
- Mapping from files > chunks
- Location of chunk replicas

+ Stored in memory

* Kept persistent thru logging

Consistency Model
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success interspersed with
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Consistent = all clients see same data

Consistency Model
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Defined = consistent + clients see full effect

of mutation
Key: all replicas must process chunk-mutation
requests in same order
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Different clients may see different data




Implications

+ Apps must rely on appends, not overwrites
* Must write records that
- Self-validate
- Self-identify
Typical uses
- Single writer writes file from beginning to end,
then renames file (or checkpoints along way)
- Many writers concurrently append
+ At-least-once semantics ok
+ Reader deal with padding & duplicates

Leases & Mutation Order

+ Objective

- Ensure data consistent & defined
- Minimize load on master

* Master grants ‘'lease’ to one replica

- Called 'primary’ chunkserver

* Primary serializes all mutation requests

- Communicates order to replicas

Write Control & Dataflow
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Atomic Appends

+ Asin last slide, but...
* Primary also checks to see if append spills

over info new chunk

- If so, pads old chunk to full extent

- Tells secondary chunk-servers to do the same
- Tells client to try append again on next chunk

* Usually works because

- max(append-size) < # chunk-size [API rule]

- (meanwhile other clients may be appending)

Other Issues

* Fast snapshot

* Master operation

- Namespace management & locking

- Replica placement & rebalancing

- Garbage collection (deleted / stale files)
- Detecting stale replicas

Master Replication

* Master log & checkpoints replicated
+ Qutside monitor watches master livelihood

- Starts new master process as needed

- Shadow masters

- Provide read-access when primary is down
- Lag state of true master
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