Google File System

CSE 454

From paper by Ghemawat, Gobioff & Leung

The Need

+ Component failures normal

- Due to clustered computing

* Files are huge

- By traditional standards (many TB)

+ Most mutations are mutations

- Not random access overwrite

+ Co-Desighing apps & file system

* Typical: 1000 nodes & 300 TB

Desiderata

* Must monitor & recover from comp failures
* Modest humber of large files
* Workload

- Large streaming reads + small random reads

- Many large sequential writes

+ Random access overwrites don't need to be efficient

* Need semantics for concurrent appends
* High sustained bandwidth

- More important than low latency

Interface

+ Familiar

- Create, delete, open, close, read, write

* Novel

- Shapshot
* Low cost
- Record append

+ Atomicity with multiple concurrent writes

Archi‘rec‘rure

Client Chunk
Server
Many { Client Many

3

9

[X X) QQ
\I~

Chunk
Client Server
data only o
°
°
Client Chunk
Server

Architecture

- Store all files

- In fixed-size chucks Chunk
- 64 MB Server
+ 64 bit unique handle

* Triple redundancy Chunk

Server

Chunk
Server

Architecture

* Stores all metadata
- Namespace
- Access-control information
- Chunk locations
- 'Lease’ management
* Heartbeats
* Having one master < global knowledge
- Allows better placement / replication
- Simplifies design

Architecture

Using fixed chunk size, translate filename &
byte offset to chunk index.
Send request to master

i .-\ppllcnlmul (file name, chunk index) | GFS master = [foobar

GFS client chunk Jefl]

File namespace !"

Instructions to chunkserver ‘ }

(chunk handle,
chunk locations)

Chunkserver state

Replies with chunk handle & location of chunkserver
replicas (including which is ‘primary’)

i Application ifile name, clunk index) | GFS master = [foolbar
| GFS client File namespace /| clunk Jefd
T (chumk handle, ;
chunk locations) /lgi
]]lh[nmlmh to chunkserver
(chunk handle, byte range) Clumkserver state
t GFS chunkserver | GFS chunkserver
clunk data ==
Linux file system Linux file system
= 5ls
00 - gag -
Legend:
mmmp Dala messages
— Control messages

{chunk handle, byte range) L]
m— 8 GFS chunkserver | | GFS chunkserver | _____
Slian: st Linux file system | | Linux file system |
5l lalg

Legend: - -

) Data messages

— Control messages

Cache info

using filename & chunk index as key

i .-\ppllcnlmul (file name, chunk index) | GFS master = [foobar

GFS client chunk Jefl]

File namespace !"

Instructions to chunkserver ‘ }

(chunk handle,
chunk locations)

| Chunkserver state

{chunk handle, byte range)

8 GFS chunkserver | | GFS chunkserver |
clunk data =
Linux file system | | Linux file system |
[1 a3 (=1 3
Legend: i
s Data messages
— Control messages

Application GFS master

File nmmespace

]]lh[nmlmh to chunkserver

- lfioibar
cliunk Jef)

! (file name. clunk index)
GFS client

(chunk handle,
chunk locations)

Chunkserver state

{chunk handle, byte range)

{ GFS chunkserver |

Linux file system
lals —
Request data from nearest chunkserver
“chunkhandle & index into chunk”

GFS chunkserver

Jnnk dars i
ik data Linux file system

'Ei'f:“:—n

No need to talk more
About this 64MB chunk
Until cached info expires or file reopened

| Application | _» [foo/bar

(file name, chunk index) | GFS master)
chunk 2efd|

File namespace !"

(chunk handle, i
chunk locations) .

Instructions to chunkserver ‘ }

| GFS client

| Chunkserver state

{chunk handle, byte range)

e { GFS chunkserver | |(;FS chunkserver |
chumk data Linux file system | | Linux file system |

Blg - Iglg_

Often initial request asks about
Sequence of chunks

i Application ifile name, clunk index) | GFS master = [foolbar

| GFS client File nmmespace cliunk 2efd
T (chumk handle, AN ;

chunk locations) |

]]lhtnmlmh to chunkserver

“hunkserver sta
{chunk handle, byte range) Clamimerver sine

GFS chunkserver

{ GFS chunkserver |

Linux file system |

chunk data
b Linux file system

b~ kBb-

Metadata

* Master stores three types
- File & chunk namespaces
- Mapping from files > chunks
- Location of chunk replicas

+ Stored in memory

* Kept persistent thru logging

Consistency Model

‘Write Record Append
Serial defined defined
success interspersed with
Concurrent | consistent inconsistent
successes but undefined
Failure inconsistent

Consistent = all clients see same data

Consistency Model

| | Write | Record Append |
Serial defined defined
success interspersed with
Concurrent inconsistent
successes
Failure inconsistent

Defined = consistent + clients see full effect

of mutation
Key: all replicas must process chunk-mutation
requests in same order

Consistency Model

‘ | Write | Record Append |
Serial defined defined
success interspersed with
Concurrent | consistent inconsistent
successes but undefined
Failure inconsistent

Different clients may see different data

Implications

+ Apps must rely on appends, not overwrites
* Must write records that
- Self-validate
- Self-identify
Typical uses
- Single writer writes file from beginning to end,
then renames file (or checkpoints along way)
- Many writers concurrently append
+ At-least-once semantics ok
+ Reader deal with padding & duplicates

Leases & Mutation Order

+ Objective

- Ensure data consistent & defined
- Minimize load on master

* Master grants ‘'lease’ to one replica

- Called 'primary’ chunkserver

* Primary serializes all mutation requests

- Communicates order to replicas

Write Control & Dataflow

1 step 1 [1

4
Client l_—'] Master

Secondary -~
Replica A

]

Primary =
Replica

I) Legend:
—= Control

Secondary } — 0

Replica B

Atomic Appends

+ Asin last slide, but...
* Primary also checks to see if append spills

over info new chunk

- If so, pads old chunk to full extent

- Tells secondary chunk-servers to do the same
- Tells client to try append again on next chunk

* Usually works because

- max(append-size) < # chunk-size [API rule]

- (meanwhile other clients may be appending)

Other Issues

* Fast snapshot

* Master operation

- Namespace management & locking

- Replica placement & rebalancing

- Garbage collection (deleted / stale files)
- Detecting stale replicas

Master Replication

* Master log & checkpoints replicated
+ Qutside monitor watches master livelihood

- Starts new master process as needed

- Shadow masters

- Provide read-access when primary is down
- Lag state of true master

Read rate (MB/s)

Read Performance

1004

A
(=
L

Network limit

Aggregate read rate

T
5

T T
10 15

Number of clients N

Write Performance

Write rate (MB/s)

60+

404

Network limit

Aggregate write rate

5 10 15
Number of clients N

Record-Append Performance

Append rate (MB/s)

—
[=]
1

o
1

Network limit

Aggregate append rate

J

10 15

Number of clients N

