Google File System

CSE 454

From paper by Ghemawat, Gobioff & Leung

The Need

- · Component failures normal
 - Due to clustered computing
- · Files are huge
 - By traditional standards (many TB)
- · Most mutations are mutations
 - Not random access overwrite
- · Co-Designing apps & file system
- · Typical: 1000 nodes & 300 TB

Desiderata

- Must monitor & recover from comp failures
- · Modest number of large files
- · Workload
 - Large streaming reads + small random reads
 - Many large sequential writes
 - · Random access overwrites don't need to be efficient
- Need semantics for concurrent appends
- · High sustained bandwidth
 - More important than low latency

Interface

- Familiar
 - Create, delete, open, close, read, write
- Novel
 - Snapshot
 - · Low cost
 - Record append
 - Atomicity with multiple concurrent writes

Metadata

- · Master stores three types
 - File & chunk namespaces
 - Mapping from files → chunks
 - Location of chunk replicas
- Stored in memory
- · Kept persistent thru logging

Implications

- · Apps must rely on appends, not overwrites
- · Must write records that
 - Self-validate
 - Self-identify
- Typical uses
 - Single writer writes file from beginning to end, then renames file (or checkpoints along way)
 - Many writers concurrently append
 - · At-least-once semantics ok
 - · Reader deal with padding & duplicates

Leases & Mutation Order

- · Objective
 - Ensure data consistent & defined
 - Minimize load on master
- Master grants 'lease' to one replica
 - Called 'primary' chunkserver
- Primary serializes all mutation requests
 - Communicates order to replicas

Write Control & Dataflow Client Secondary Replica A Primary Legend: Control Secondary

Data

Atomic Appends

- · As in last slide, but...
- · Primary also checks to see if append spills over into new chunk
 - If so, pads old chunk to full extent
 - Tells secondary chunk-servers to do the same
 - Tells client to try append again on next chunk
- · Usually works because
 - $max(append-size) < \frac{1}{4} chunk-size [API rule]$
 - (meanwhile other clients may be appending)

Other Issues

- · Fast snapshot
- Master operation
 - Namespace management & locking
 - Replica placement & rebalancing

Replica B

- Garbage collection (deleted / stale files)
- Detecting stale replicas

Master Replication

- · Master log & checkpoints replicated
- Outside monitor watches master livelihood
 - Starts new master process as needed
- Shadow masters
 - Provide read-access when primary is down
 - Lag state of true master

