
1

10/20/2005 2:04 PM 1Copyright © 2000-2005 D.S.Weld

CSE 454 - Case Studies

Design of Alta Vista

Based on a talk by Mike Burrows

10/20/2005 2:04 PM 2Copyright © 2000-2005 D.S.Weld

AltaVista: Inverted Files
• Map each word to list of locations where it occurs
• Words = null-terminated byte strings
• Locations = 64 bit unsigned ints

– Layer above gives interpretation for location
• URL
• Index into text specifying word number

• Slides adapted from talk by Mike Burrows

10/20/2005 2:04 PM 3Copyright © 2000-2005 D.S.Weld

Documents
• A document is a region of location space

– Contiguous
– No overlap
– Densely allocated (first doc is location 1)

• All document structure encoded with words
– enddoc at last location of document
– begintitle, endtitle mark document title

0 1 2 3 4 5 6 7 8 ...

Document 1 Document 2 ...

10/20/2005 2:04 PM 4Copyright © 2000-2005 D.S.Weld

Format of Inverted Files
• Words ordered lexicographically
• Each word followed by list of locations
• Common word prefixes are compressed
• Locations encoded as deltas

– Stored in as few bytes as possible
– 2 bytes is common
– Sneaky assembly code for operations on inverted files

• Pack deltas into aligned 64 bit word
• First byte contains continuation bits
• Table lookup on byte => no branch instructs, no mispredicts
• 35 parallelized instructions/ 64 bit word = 10 cycles/word

• Index ~ 10% of text size

10/20/2005 2:04 PM 5Copyright © 2000-2005 D.S.Weld

Index Stream Readers (ISRs)
• Interface for

– Reading result of query
– Return ascending sequence of locations
– Implemented using lazy evaluation

• Methods
– loc(ISR) return current location
– next(ISR) advance to next location
– seek(ISR, X) advance to next loc after X
– prev(ISR) return previous location !

10/20/2005 2:04 PM 6Copyright © 2000-2005 D.S.Weld

Processing Simple Queries
• User searches for “mp3”

• Open ISR on “mp3”
– Uses hash table to avoid scanning entire file

• Next(), next(), next()
– returns locations containing the word

2

10/20/2005 2:04 PM 7Copyright © 2000-2005 D.S.Weld

Combining ISRs
• And Compare locs on two streams
• Or

file ISR file ISR file ISR

or ISR

and ISR

genesis fixx

mp3

Genesis OR fixx

(genesis OR fixx) AND mp3

• Or Merges two or more ISRs
• Not• Not Returns locations not in ISR (lazily)

Problem
!!!

10/20/2005 2:04 PM 8Copyright © 2000-2005 D.S.Weld

ISR Constraint Solver
• Inputs:

– Set of ISRs: A, B, ...
– Set of Constraints

• Constraint Types
– loc(A) ≤ loc(B) + K
– prev(A) ≤ loc(B) + K
– loc(A) ≤ prev(B) + K
– prev(A) ≤ prev(B) + K

• For example: phrase “a b”
– loc(A) ≤ loc(B), loc(B) ≤ loc(A) + 1

a a b a a b a b

10/20/2005 2:04 PM 9Copyright © 2000-2005 D.S.Weld

Two words on one page
• Let E be ISR for word enddoc
• Constraints for conjunction a AND b

– prev(E) ≤ loc(A)
– loc(A) ≤ loc(E)
– prev(E) ≤ loc(B)
– loc(B) ≤ loc(E)

b a e b a b e b

prev(E)

loc(A)

loc(E)loc(B)

What i
f prev

(E)

Undefin
ed?

10/20/2005 2:04 PM 10Copyright © 2000-2005 D.S.Weld

Advanced Search
• Field query: a in Title of page
• Let BT, ET be ISRP of words begintitle, endtitle
• Constraints:

– loc(BT) ≤ loc(A)
– loc(A) ≤ loc(ET)
– prev(ET) ≤ loc(BT)

et a bt a et a bt et

prev(ET)

loc(BT)
loc(A)

loc(ET)

10/20/2005 2:04 PM 11Copyright © 2000-2005 D.S.Weld

Solver Algorithm

• To satisfy: loc(A) ≤ loc(B) + K
– Execute: seek(B, loc(A) - K)

• To satisfy: prev(A) ≤ loc(B) + K
– Execute: seek(B, prev(A) - K)

• To satisfy: loc(A) ≤ prev(B) + K
– Execute: seek(B, loc(A) - K),
– next(B)

• To satisfy: prev(A) ≤ prev(B) + K
– Execute: seek(B, prev(A) - K)
– next(B)

while (unsatisfied_constraints)
satisfy_constraint(choose_unsat_constraint())

Heuristic:
Which choice
advances a
stream the
furthest?

10/20/2005 2:04 PM 12Copyright © 2000-2005 D.S.Weld

Update
• Can’t insert in the middle of an inverted file
• Must rewrite the entire file

– Naïve approach: need space for two copies
– Slow since file is huge

• Split data along two dimensions
– Buckets solve disk space problem
– Tiers alleviate small update problem

3

10/20/2005 2:04 PM 13Copyright © 2000-2005 D.S.Weld

Buckets & Tiers
• Each word is hashed to a bucket
• Add new documents by adding a new tier

– Periodically merge tiers, bucket by bucket
• Delete documents by adding deleted word

– Expunge deletions when merging tier 0

Tier
 1

Hash bucket(s) for word a
Hash bucket(s) for word b

Hash bucket(s) for word zebra

Tier
 2 . . .

. . .

older newer
bigger smaller

10/20/2005 2:04 PM 14Copyright © 2000-2005 D.S.Weld

Scaling
• How handle huge traffic?

– AltaVista Search ranked #16
– 10,674,000 unique visitors (Dec’99)

• Scale across N hosts
1. Ubiquitous index. Query one host
2. Split N ways. Query all, merge results
3. Ubiquitous index. Host handles subrange of locations.

Query all, merge results
4. Hybrids

10/20/2005 2:04 PM 15Copyright © 2000-2005 D.S.Weld

• Front ends
– Alpha workstations

• Back ends
– 4-10 CPU Alpha servers

• 8GB RAM, 150GB disk
– Organized in groups of 4-10 machines

• Each with 1/Nth of index

AltaVista Structure

Back end
index
serversFDDI

switch
FDDI
switch

To alternate
site

Border
routers

Front end
HTTP servers

