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CSE 454

Inverted Indices
(with Compression & LSI)
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Project Proto-Idea
• Search + Tagging + Wiki + Social Network = ?

• Project Reality 
– Part 1 handed out tomorrow
– If you want to do something different, let me know by 

tomorrow
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Standard Web Search Engine Architecture

crawl the
web

create an 
inverted
index

store documents,
check for duplicates,

extract links

inverted 
index

DocIds

Slide adapted from Marty Hearst / UC Berkeley]

Search 
engine 
servers

user
query

show results 
To user
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Review: Precision & Recall
• Precision

– Proportion of selected 
items that are correct

• Recall

– Proportion of target items 
that were selected

• Precision-Recall curve
– Shows tradeoff

tn

fp tp fn

System returned these

Actual relevant docs
fptp

tp
+

fntp
tp
+

Recall

Precision

10/20/2005 1:58 PM 5Copyright © Kambhampati / Weld  2002-5

Review
• Vector Space Representation

– Dot Product as Similarity Metric

• TF-IDF for Computing Weights
– wij =  f(i,j) *  log(N/ni)

• But How Process Efficiently? documents

te
rm

s

q dj
t1

t2
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Today’s Class
• Efficient query processing

– Inverted indicies (creation & query processing)
– Compression

• Latent Semantic Indexing (LSI)
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Course Overview

Systems Foundation: Networking, Synchronization & Monitors

Datamining

Cluster Computing 

Crawler Architecture

Case Studies: Nutch, Google, Altavista

Information Retrieval
Precision vs Recall
Inverted Indicies

P2P Security
Web Services
Semantic Web

Info 
Extraction Ecommerce

Advt

New
Stuff

?
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Search Engine Components

• Spider
– Getting the pages

• Indexing
– Storing (e.g. in an inverted file)

• Query Processing
– Booleans, …

• Ranking
– Vector space model, PageRank, anchor text analysis

• Summaries
• Refinement

10/20/2005 1:58 PM 9Copyright © Kambhampati / Weld  2002-5

Efficient Retrieval 

Document-term matrix  
t1 t2 . . .    tj . . .    tm nf

d1 w11 w12 . . .   w1j . . .   w1m          1/|d1|
d2 w21 w22 . . .   w2j . . .    w2m          1/|d2|

.  .  .  .  .  .  .  .  .  .  .  .  .  .
di wi1 wi2 . . .   wij . . .   wim 1/|di|

.  .  .  .  .  .  .  .  .  .  .  .  .  .
dn wn1 wn2 . . .   wnj . . .   wnm 1/|dn|

wij is the weight of term tj in document di

Most wij’s will be zero.
10/20/2005 1:58 PM 10Copyright © Kambhampati / Weld  2002-5

Naïve Retrieval
Consider query q = (q1, q2, …, qj, …, qn), nf = 1/|q|.

How evaluate q?
(i.e., compute the similarity between q and every document)?

Method 1: Compare q w/ every document directly.
Document data structure: 

di : ((t1, wi1), (t2, wi2), . . ., (tj, wij), . . ., (tm, wim ), 1/|di|)
– Only terms with positive weights are kept.
– Terms are in alphabetic order.

Query data structure:
q : ((t1, q1), (t2, q2), . . ., (tj, qj), . . ., (tm, qm ),  1/|q|)
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Naïve Retrieval  (continued)

Method 1: Compare q with documents directly

initialize all sim(q, di) = 0;
for each document di (i = 1, …, n)

{ for each term tj (j = 1, …, m)
if tj appears in both q and di

sim(q, di) += qj ∗wij;
sim(q, di) = sim(q, di) ∗(1/|q|) ∗(1/|di|); }

sort documents in descending similarities;   
display the top k to the user;
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Observation

• Method 1 is not efficient
– Needs to access most non-zero entries in doc-term matrix.

• Solution: Use Index  (Inverted File)
– Data structure to permit fast searching.

• Like an Index in the back of a text book.
– Key words --- page numbers.
– E.g, “Etzioni, 40, 55, 60-63, 89, 220”
– Lexicon
– Occurrences
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Search Processing (Overview)
1. Lexicon search

– E.g. looking in index to find entry
2. Retrieval of occurrences

– Seeing where term occurs
3. Manipulation of occurrences

– Going to the right page
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Inverted Files

A file is a list of words by position
First entry is the word in position 1 (first word)
Entry 4562 is the word in position 4562 (4562nd word)
Last entry is the last word
An inverted file is a list of positions by word!

POS
1

10

20

30

36

FILE

a (1, 4, 40)
entry (11, 20, 31)
file (2, 38)
list (5, 41)
position (9, 16, 26)
positions (44)
word (14, 19, 24, 29, 35, 45)
words (7)
4562 (21, 27)

INVERTED FILE

aka “Index”
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Inverted Files for Multiple Documents

107 4 322 354 381 405
232 6 15 195 248 1897 1951 2192
677 1 481
713 3 42 312 802

WORD NDOCS PTR
jezebel 20
jezer 3
jezerit 1
jeziah 1
jeziel 1
jezliah 1

jezoar 1
jezrahliah 1
jezreel 39

jezoar

34 6 1 118 2087 3922 3981 5002
44 3 215 2291 3010
56 4 5 22 134 992

DOCID    OCCUR    POS 1     POS 2     . . .

566 3 203 245 287

67 1 132

. . .

“jezebel” occurs
6 times in document 34,
3 times in document 44,
4 times in document 56 . . .

LEXICON

OCCURENCE 
INDEX

• One method. Alta Vista uses alternative

…
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Many Variations Possible
• Address space (flat, hierarchical)
• Record term-position information
• Precalculate TF-IDF info 
• Stored header, font & tag info 
• Compression strategies
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Using Inverted Files

Several data structures:
1. For each term tj, create a list (inverted file list) that 

contains all document ids that have tj.
I(tj) = { (d1, w1j), (d2, w2j), …, (di, wij), …, (dn, wnj) }

– di is the document id number of the ith document.
– Weights come from freq of term in doc
– Only entries with non-zero weights should be kept.  
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Inverted files continued

More data structures:

2. Normalization factors of documents are pre-
computed and stored in an array 

nf[i] stores  1/|di|.
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Inverted files continued

More data structures:

3. Lexicon: a hash table for all terms in the collection.
. . . . . .

tj pointer to I(tj)
. . . . . .

– Inverted file lists are typically stored on disk.
– The number of distinct terms is usually very large.
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Digression…
• Data structures on disk…
• Revisiting  CSE 326

Big O notation
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Retrieval using Inverted files
initialize all sim(q, di) = 0;
for each term tj in q 

{ find I(t) using the hash table;
for each (di, wij) in I(t) 

sim(q, di) += qj ∗wij; }
for each document di

sim(q, di) = sim(q, di) ∗ nf[i]; 
sort documents in descending similarities and   

display the top k to the user;
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Observations about Method 2
• If doc d doesn’t contain any term of  query q, 

then d won’t be considered when evaluating q.

• Only non-zero entries in the columns of the 
document-term matrix which correspond to 
query terms … are used to evaluate the query.

• Computes the similarities of multiple documents 
simultaneously (w.r.t. each query word)
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Efficient Retrieval 

Example (Method 2): Suppose
q = { (t1, 1), (t3, 1) },  1/|q| = 0.7071

d1 = { (t1, 2), (t2, 1), (t3, 1) },  nf[1] = 0.4082
d2 = { (t2, 2), (t3, 1), (t4, 1) },  nf[2] = 0.4082
d3 = { (t1, 1), (t3, 1), (t4, 1) },  nf[3] = 0.5774
d4 = { (t1, 2), (t2, 1), (t3, 2), (t4, 2) }, nf[4] = 0.2774
d5 = { (t2, 2), (t4, 1), (t5, 2) }, nf[5] = 0.3333
I(t1) = { (d1, 2), (d3, 1), (d4, 2) }
I(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5, 2) }
I(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4, 2) }
I(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5, 1) }
I(t5) = { (d5, 2) }
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Efficient Retrieval q = { (t1, 1), (t3, 1) },  1/|q| = 0.7071

d1 = { (t1, 2), (t2, 1), (t3, 1) },  nf[1] = 0.4082
d2 = { (t2, 2), (t3, 1), (t4, 1) },  nf[2] = 0.4082
d3 = { (t1, 1), (t3, 1), (t4, 1) },  nf[3] = 0.5774
d4 = { (t1, 2), (t2, 1), (t3, 2), (t4, 2) }, nf[4] = 0.2774
d5 = { (t2, 2), (t4, 1), (t5, 2) }, nf[5] = 0.3333

I(t1) = { (d1, 2), (d3, 1), (d4, 2) }
I(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5, 2) }
I(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4, 2) }
I(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5, 1) }
I(t5) = { (d5, 2) }

After t1 is processed:
sim(q, d1) = 2,      sim(q, d2) = 0,
sim(q, d3) = 1
sim(q, d4) = 2,      sim(q, d5) = 0

After t3 is processed:
sim(q, d1) = 3,      sim(q, d2) = 1,     
sim(q, d3) = 2
sim(q, d4) = 4,      sim(q, d5) = 0

After normalization:
sim(q, d1) = .87,   sim(q, d2) = .29,  
sim(q, d3) = .82
sim(q, d4) = .78,   sim(q, d5) = 0
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Efficiency versus Flexibility

• Storing computed document weights is good 
for efficiency,   but bad for flexibility.

– Recomputation needed if TF and IDF formulas 
change and/or TF and DF information changes.

• Flexibility improved by storing raw TF, DF 
information,    but efficiency suffers.

• A compromise
– Store pre-computed TF weights of documents.
– Use IDF weights with query term TF weights 

instead of document term TF weights.
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How Inverted Files are Created

Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

ptrs
to

docs
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Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

Repository
• File containing all documents downloaded
• Each doc has unique ID
• Ptr file maps from IDs to start of doc in repository

ptrs
to

docs
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Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

ptrs
to

docs

NF
• Length of each document

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2

Forward Index

Pos
1
2
3
4
5
6
7
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Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

ptrs
to

docs

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sorted Index

(positional info as well)
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Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

WORD NDOCS PTR
jezebel 20
jezer 3
jezerit 1
jeziah 1
jeziel 1
jezliah 1
jezoar 1
jezrahliah 1
jezreel 39

jezoar

34 6 1 118 2087 3922 3981 5002
44 3 215 2291 3010
56 4 5 22 134 992

DOCID    OCCUR    POS 1     POS 2     . . .

566 3 203 245 287

67 1 132

. . .

ptrs
to

docs

Lexicon

Inverted File List
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The Lexicon

• Grows Slowly (Heap’s law)
– O(nβ) where n=text size; β is constant ~0.4 – 0.6
– E.g. for 1GB corpus, lexicon = 5Mb
– Can reduce with stemming (Porter algorithm)

• Store lexicon in file in lexicographic order
– Each entry points to loc in occurrence file 

(aka inverted file list)
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Construction
• Build Trie (or hash table)

1      6   9  11    17  19   24   28      33        40       46 50      55    60
This is  a   text. A   text has many words. Words are made from letters.

letters: 60

text: 11, 19

words: 33, 40

made: 50

many: 28

l
m a

d

n
t

w
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Memory Too Small?

1 2 3 4

1-2

1-4

3-4

• Merging
– When word is shared in two lexicons
– Concatenate occurrence lists
– O(n1 + n2)

• Overall complexity
– O(n log(n/M)
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Stop lists
• Language-based stop list: 

– words that bear little meaning
– 20-500 words
– http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

• Subject-dependent stop lists
• Removing stop words

– From document
– From query

From Peter Brusilovsky Univ Pittsburg INFSCI 2140 
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Stemming
• Are there different index terms?

– retrieve, retrieving, retrieval, retrieved, retrieves…
• Stemming algorithm: 

– (retrieve, retrieving, retrieval, retrieved, retrieves) 
retriev

– Strips prefixes of suffixes (-s, -ed, -ly, -ness)
– Morphological stemming
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Stemming Continued 
• Can reduce vocabulary by ~ 1/3
• C, Java, Perl versions, python, c#

www.tartarus.org/~martin/PorterStemmer
• Criterion for removing a suffix 

– Does "a document is about w1" mean the same as 
– a "a document about w2" 

• Problems: sand / sander & wand / wander
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Compression
• What Should We Compress?

– Repository
– Lexicon
– Inv Index

• What properties do we want?
– Compression ratio
– Compression speed
– Decompression speed
– Memory requirements
– Pattern matching on compressed text
– Random access
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Inverted File Compression

Each inverted list has the form 1 2 3  ;  , , , ... , 
tt ff d d d d< >

A naïve representation results in a storage overhead of (   ) * logf n N+ ⎡ ⎤

This can also be stored as 1 2 1 1; , ,...,
t tt f ff d d d d d −< − − >

Each difference is called a d-gap. Since ( ) ,d gaps N− ≤∑
each pointer requires fewer than

Trick is encoding …. since worst case  ….

log N⎡ ⎤ bits.

Assume d-gap representation for the rest of the talk, unless stated 
otherwise

Slides adapted from Tapas Kanungo and David Mount, Univ Maryland
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Text Compression
Two classes of text compression methods
• Symbolwise (or statistical) methods

– Estimate probabilities of symbols - modeling step
– Code one symbol at a time - coding step
– Use shorter code for the most likely symbol
– Usually based on either arithmetic or Huffman coding

• Dictionary methods
– Replace fragments of text with a single code word 
– Typically an index to an entry in the dictionary.

• eg: Ziv-Lempel coding: replaces strings of characters with a pointer to 
a previous occurrence of the string.

– No probability estimates needed

Symbolwise methods are more suited for coding d-gaps
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Classifying d-gap Compression Methods:

• Global: each list compressed using same model
– non-parameterized: probability distribution for d-gap sizes is 

predetermined.
– parameterized: probability distribution is adjusted according to 

certain parameters of the collection.

• Local: model is adjusted according to some parameter, 
like the frequency of the term

• By definition, local methods are parameterized.
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Conclusion
• Local methods best
• Parameterized global models ~ non-parameterized

– Pointers not scattered randomly in file
• In practice, best index compression algorithm is:

– Local Bernoulli method (using Golomb coding)
• Compressed inverted indices usually faster+smaller than 

– Signature files
– Bitmaps

Local <  Parameterized Global <  Non-parameterized Global

Not by much
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-- Relevant docs may not have the query terms
but may have many “related” terms

-- Irrelevant docs may have the query terms
but may not have any “related” terms

Motivating the Need for LSI
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a b c d e f g h I
Interface 0 0 1 0 0 0 0 0 0
User 0 1 1 0 1 0 0 0 0
System 2 1 1 0 0 0 0 0 0
Human 1 0 0 1 0 0 0 0 0
Computer 0 1 0 1 0 0 0 0 0
Response 0 1 0 0 1 0 0 0 0
Time 0 1 0 0 1 0 0 0 0
EPS 1 0 1 0 0 0 0 0 0
Survey 0 1 0 0 0 0 0 0 1
Trees 0 0 0 0 0 1 1 1 0
Graph 0 0 0 0 0 0 1 1 1
Minors 0 0 0 0 0 0 0 1 1

Terms and Docs as vectors in  
“factor” space

Document vector

Term vector

If terms are independent, the
T-T similarity matrix would 
be diagonal

=If it is not diagonal, we can
use the correlations to add
related terms to the query

=But can also ask the question
“Are there independent 

dimensions which define the
space where terms & docs are
vectors ?”

In addition to doc-doc similarity, 
We can compute term-term distance
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Latent Semantic Indexing
• Creates modified vector space
• Captures transitive co-occurrence information

– If docs A & B don’t share any words, with each other, 
but both share lots of words with doc C, then A & B will 
be considered similar

– Handles polysemy (adam’s apple) & synonymy
• Simulates query expansion and document 

clustering (sort of)
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• The key idea is to map documents and queries 
into a lower dimensional space (i.e., composed 
of higher level concepts which are in fewer 
number than the index terms) 

• Retrieval in this reduced concept space might 
be superior to retrieval in the space of index 
terms

LSI Intuition
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Visual Example
• Classify Fish

– Length
– Height
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Move Origin
• To center of centroid
• But are these the best axes?

Better if one axis accounts for most data variation
What should we call the red axis?
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We retain 1.75/2.00 x 100 (87.5%) 
of the original variation. 

Thus, by discarding the yellow axis 
we lose only 12.5% 
of the original information.

Reduce Dimensions

• What if we only consider “size”
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Not Always Appropriate
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Linear Algebra Review
• Let A be a matrix
• X is an Eigenvector of A if 

– A*X= λX
• λ is an Eigenvalue
• Transpose: 

A X X*    = λ

A
T

=

10/20/2005 1:58 PM 51Copyright © Kambhampati / Weld  2002-5

• Let m be the total number of index terms
• Let n be the number of documents
• Let  [Aij] be a term-document matrix 

– With m rows and n columns
– Entries = weights, wij, associated with the pair [ki,dj]

• The weights can be computed with tf-idf

Latent Semantic Indexing Defns
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• Factor [Aij] matrix into 3 matrices as follows:
• (Aij) = (U) (S) (V)t

– (U) is the matrix of eigenvectors derived from (A)(A)t

– (V)t is the matrix of eigenvectors derived from (A)t(A)
– (S) is an  r x r diagonal matrix of singular values 

• r = min(t,n)  that is, the rank of (Aij)
• Singular values are the positive square roots of the eigen 

values of (A)(A)t (also (A)t(A))
U and V are 

orthogonal 

matrices

Singular Value Decomposition
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Vk
t =

=
mxn
Âk

mxk
Uk

kxk
Dk

kxn
VT

k

Terms

Documents

⇒

Recreate Matrix:
Multiply to produce
approximate term-
document matrix.
Use new matrix to

process queries

Uk
Sk

LSI in a Nutshell

=

=
m xn

A
m xr

U
rxr
D

rxn
V T

T erms

D ocuments

Singular Value
Decomposition

(SVD):
Convert term-document
matrix into 3 matrices

U, S and V

M U S Vt

Vk
t =

=
mxn
Âk

mxk
Uk

kxk
Dk

kxn
VT

k

Terms

Documents

⇒

Reduce Dimensionality:
Throw out low-order

rows and columns

Uk
Sk
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Example

term ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

controllability 1 1 0 0 1 0 0 1

observability 1 0 0 0 1 1 0 1

realization 1 0 1 0 1 0 1 0

feedback 0 1 0 0 0 1 0 0

controller 0 1 0 0 1 1 0 0

observer 0 1 1 0 1 1 0 0
transfer 
function 0 0 0 0 1 1 0 0

polynomial 0 0 0 0 1 0 1 0

matrices 0 0 0 0 1 0 1 1

U (9x7) = 
0.3996 -0.1037 0.5606 -0.3717 -0.3919 -0.3482 0.1029 
0.4180 -0.0641 0.4878 0.1566 0.5771 0.1981 -0.1094 
0.3464 -0.4422 -0.3997 -0.5142 0.2787 0.0102 -0.2857 
0.1888 0.4615 0.0049 -0.0279 -0.2087 0.4193 -0.6629 
0.3602 0.3776 -0.0914 0.1596 -0.2045 -0.3701 -0.1023 
0.4075 0.3622 -0.3657 -0.2684 -0.0174 0.2711 0.5676 
0.2750 0.1667 -0.1303 0.4376 0.3844 -0.3066 0.1230 
0.2259 -0.3096 -0.3579 0.3127 -0.2406 -0.3122 -0.2611 
0.2958 -0.4232 0.0277 0.4305 -0.3800 0.5114 0.2010

S (7x7) = 
3.9901 0 0 0 0 0 0 

0 2.2813 0 0 0 0 0 
0 0 1.6705 0 0 0 0 
0 0 0 1.3522 0 0 0 
0 0 0 0 1.1818 0 0 
0 0 0 0 0 0.6623 0 
0 0 0 0 0 0 0.6487

V (7x8) = 
0.2917 -0.2674 0.3883 -0.5393 0.3926 -0.2112 -0.4505 
0.3399 0.4811 0.0649 -0.3760 -0.6959 -0.0421 -0.1462 
0.1889 -0.0351 -0.4582 -0.5788 0.2211 0.4247 0.4346 

-0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 
0.6838 -0.1913 -0.1609 0.2535 0.0050 -0.5229 0.3636 
0.4134 0.5716 -0.0566 0.3383 0.4493 0.3198 -0.2839 
0.2176 -0.5151 -0.4369 0.1694 -0.2893 0.3161 -0.5330 
0.2791 -0.2591 0.6442 0.1593 -0.1648 0.5455 0.2998This happens to be a rank-7 matrix

-so only 7 dimensions required
Singular values = Sqrt of Eigen values of AAT

T
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Now to Reduce Dimensions…
• In the matrix (S), select k largest singular values
• Keep the corresponding columns in (U) and (V)t 

• The resultant matrix  is called (M)k and is given by
– (M)k = (U)k (S)k (V)t

k

– where  k, k < r, is the dimensionality of the concept space
• The parameter  k  should be

– large enough to allow fitting the characteristics of the data
– small enough to filter out the non-relevant representational 

details

The classic 

over-fitt
ing issue
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U2 (9x2) = 
0.3996 -0.1037 
0.4180 -0.0641 
0.3464 -0.4422 
0.1888 0.4615 
0.3602 0.3776 
0.4075 0.3622 
0.2750 0.1667 
0.2259 -0.3096 
0.2958 -0.4232

S2 (2x2) = 
3.9901 0 

0 2.2813

V2 (8x2) = 
0.2917 -0.2674 
0.3399 0.4811 
0.1889 -0.0351 

-0.0000 -0.0000 
0.6838 -0.1913 
0.4134 0.5716 
0.2176 -0.5151 
0.2791 -0.2591

U (9x7) = 
0.3996 -0.1037 0.5606 -0.3717 -0.3919 -0.3482 0.1029 
0.4180 -0.0641 0.4878 0.1566 0.5771 0.1981 -0.1094 
0.3464 -0.4422 -0.3997 -0.5142 0.2787 0.0102 -0.2857 
0.1888 0.4615 0.0049 -0.0279 -0.2087 0.4193 -0.6629 
0.3602 0.3776 -0.0914 0.1596 -0.2045 -0.3701 -0.1023 
0.4075 0.3622 -0.3657 -0.2684 -0.0174 0.2711 0.5676 
0.2750 0.1667 -0.1303 0.4376 0.3844 -0.3066 0.1230 
0.2259 -0.3096 -0.3579 0.3127 -0.2406 -0.3122 -0.2611 
0.2958 -0.4232 0.0277 0.4305 -0.3800 0.5114 0.2010

S (7x7) = 
3.9901 0 0 0 0 0 0 

0 2.2813 0 0 0 0 0 
0 0 1.6705 0 0 0 0 
0 0 0 1.3522 0 0 0 
0 0 0 0 1.1818 0 0 
0 0 0 0 0 0.6623 0 
0 0 0 0 0 0 0.6487

V (7x8) = 
0.2917 -0.2674 0.3883 -0.5393 0.3926 -0.2112 -0.4505 
0.3399 0.4811 0.0649 -0.3760 -0.6959 -0.0421 -0.1462 
0.1889 -0.0351 -0.4582 -0.5788 0.2211 0.4247 0.4346 

-0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 
0.6838 -0.1913 -0.1609 0.2535 0.0050 -0.5229 0.3636 
0.4134 0.5716 -0.0566 0.3383 0.4493 0.3198 -0.2839 
0.2176 -0.5151 -0.4369 0.1694 -0.2893 0.3161 -0.5330 
0.2791 -0.2591 0.6442 0.1593 -0.1648 0.5455 0.2998

U2*S2*V2 will be a 9x8 matrix
That approximates original matrix

T

Formally, this will be the rank-k (2)
matrix that is closest to M in the 
matrix norm sense
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term ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

controllability 1 1 0 0 1 0 0 1

observability 1 0 0 0 1 1 0 1

realization 1 0 1 0 1 0 1 0

feedback 0 1 0 0 0 1 0 0

controller 0 1 0 0 1 1 0 0

observer 0 1 1 0 1 1 0 0
transfer 
function 0 0 0 0 1 1 0 0

polynomial 0 0 0 0 1 0 1 0

matrices 0 0 0 0 1 0 1 1

term ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

controllability 1 1 0 0 1 0 0 1

observability 1 0 0 0 1 1 0 1

realization 1 0 1 0 1 0 1 0

feedback 0 1 0 0 0 1 0 0

controller 0 1 0 0 1 1 0 0

observer 0 1 1 0 1 1 0 0
transfer 
function 0 0 0 0 1 1 0 0

polynomial 0 0 0 0 1 0 1 0

matrices 0 0 0 0 1 0 1 1

termterm ch2ch2 ch3ch3 ch4ch4 ch5ch5 ch6ch6 ch7ch7 ch8ch8 ch9ch9

controllabilitycontrollability 11 11 00 00 11 00 00 11

observabilityobservability 11 00 00 00 11 11 00 11

realizationrealization 11 00 11 00 11 00 11 00

feedbackfeedback 00 11 00 00 00 11 00 00

controllercontroller 00 11 00 00 11 11 00 00

observerobserver 00 11 11 00 11 11 00 00
transfer 
function
transfer 
function 00 00 00 00 11 11 00 00

polynomialpolynomial 00 00 00 00 11 00 11 00

matricesmatrices 00 00 00 00 11 00 11 11

K=2

K=6
One component ignored

5 components ignored

U6S6V6
T

U2S2V2
T

USVT

0.52835834 0.42813724 0.30949408 0.0 1.1355368 0.5239192 0.46880865 0.5063048

0.5256176 0.49655432 0.3201918 0.0 1.1684579 0.6059082 0.4382505 0.50338876

0.6729299 -0.015529543 0.29650056 0.0 1.1381099 -0.0052356124 0.82038856 0.6471

-0.0617774 0.76256883 0.10535021 0.0 0.3137232 0.9132189 -0.37838274 -0.06253

0.18889774 0.90294445 0.24125765 0.0 0.81799114 1.0865396 -0.1309748 0.17793834

0.25334513 0.95019233 0.27814224 0.0 0.9537667 1.1444798 -0.071810216 0.2397161

0.21838559 0.55592346 0.19392742 0.0 0.6775683 0.6709899  0.042878807 0.2077163

0.4517898 -0.033422917 0.19505836 0.0 0.75146574 -0.031091988 0.55994695 0.4345

0.60244554 -0.06330189 0.25684044 0.0 0.99175954 -0.06392482 0.75412846 0.5795

1.0299273 1.0099105 -0.029033005 0.0 0.9757162 0.019038305 0.035608776 0.98004794

0.96788234 -0.010319378 0.030770123 0.0 1.0258299 0.9798115 -0.03772955 1.0212346

0.9165214 -0.026921304 1.0805727 0.0 1.0673982 -0.052518982 0.9011715 0.055653755

-0.19373542 0.9372319 0.1868434 0.0 0.15639876 0.87798584  -0.22921464 0.12886547

-0.029890355 0.9903935 0.028769515 0.0 1.0242295 0.98121595 -0.03527296 0.020075336

0.16586632 1.0537577 0.8398298 0.0 0.8660687 1.1044582 0.19631699 -0.11030859

0.035988174 0.01172187 -0.03462495 0.0 0.9710446 1.0226605 0.04260301 -0.023878671

-0.07636017 -0.024632007 0.07358454 0.0 1.0615499 -0.048087567 0.909685 0.050844945

0.05863098 0.019081593 -0.056740552 0.0 0.95253044 0.03693092 1.0695065 0.96087193

1.1630535 0.67789733 0.17131016 0.0 0.85744447 0.30088043  -0.025483057 1.0295205

0.7278324 0.46981966 -0.1757451 0.0 1.0910251 0.6314231 0.11810507  1.0620605

0.78863835 0.20257005 1.0048805 0.0 1.0692837 -0.20266426 0.9943222 0.106248446

-0.03825318 0.7772852 0.12343567 0.0 0.30284256 0.89999276 -0.3883498 -0.06326774

0.013223715 0.8118903 0.18630582 0.0 0.8972661 1.1681904 -0.027708884 0.11395822

0.21186034 1.0470067 0.76812166 0.0 0.960058 1.0562774 0.1336124 -0.2116417

-0.18525022 0.31930918 -0.048827052 0.0 0.8625925 0.8834896 0.23821498 0.1617572

-0.008397698 -0.23121 0.2242676 0.0 0.9548515 0.14579195 0.89278513 0.1167786

0.30647483 -0.27917668 -0.101294056 0.0 1.1318822 0.13038804 0.83252335 0.70210195

U4S4V4
T

K=4

=U7S7V7
T

3 components
ignored

What should be the value of k?
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M = U S VT

Mapping of keywords into 
LSI space is given by US

For k=2, the mapping is:
1.5944439  -0.2365708

1.6678618  -0.14623132

1.3821706   -1.0087909

0.7533309   1.05282

1.4372339   0.86141896

1.6259657   0.82628685

1.0972775   0.38029274

0.90136355   -0.7062905

1.1802715   -0.96544623

controllability

observability

realization

feedback

controller

observer

Transfer function

polynomial

matrices

LSx LSy

controllability

controller

LSIx

LSIy

Mapping of a doc d=[w1….wk] into 
LSI space is given by dUS-1

The base-keywords of
The doc are first mapped 
To LSI keywords and 
Then differentially weighted
By S-1

ch3

Coordinate transformation inherent in LSI
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t1= database
t2=SQL
t3=index
t4=regression
t5=likelihood
t6=linear
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Should clean this up into a 
slide summarizing the info 
loss formula

Calculating Information Loss
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SVD Computation complexity
• For an m*n matrix SVD computation is

– O( km2n+k’n3)   complexity
• k=4 and k’=22 for best algorithms

– Approximate algorithms that exploit the sparsity of M are 
available (and being developed)
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What LSI can do
• LSI analysis effectively does

– Dimensionality reduction
– Noise reduction
– Exploitation of redundant data
– Correlation analysis and Query expansion (with related words)

• Any one of the individual effects can be achieved with 
simpler techniques (see thesaurus construction). But LSI 
does all of them together.
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LSI is not the most sophisticated 
dimensionality reduction technique

• Dimensionality reduction is a useful technique for any 
classification/regression problem 
– Text retrieval can be seen as a classification problem

• Many other dimensionality reduction techniques
– Neural nets, support vector machines etc. 

• Compared to them, LSI is limited because it’s linear
– It cannot capture non-linear dependencies between original 

dimensions 
– E.g. 


