

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5

- Project Reality

- Part 1 handed out tomorrow
- If you want to do something different, let me know by tomorrow

Project Proto-Idea

- Search + Tagging + Wiki + Social Network = ? 2

Vector Space Representation

- Dot Product as Similarity Metric

TF-IDF for Computing Weights $-w_{i j}=f(i, j) * \log \left(N / n_{i}\right)$ \qquad
!
But How Process Efficiently?

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5

Search Engine Components

- Spider

- Getting the pages
- Indexing
- Storing (e.g. in an inverted file)
- Query Processing
- Booleans, ...
- Ranking
- Vector space model, PageRank, anchor text analysis
- Summaries
- Refinement 10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 8

Naïve Retrieval

Consider query $\mathrm{q}=\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{\mathrm{j}}, \ldots, \mathrm{q}_{\mathrm{n}}\right), \mathrm{nf}=1 /|\mathrm{q}|$.
How evaluate q?
(i.e., compute the similarity between q and every document)?

Method 1: Compare q w/ every document directly.
Document data structure:

$$
\mathrm{d}_{\mathrm{i}}:\left(\left(\mathrm{t}_{1}, w_{\mathrm{il}}\right),\left(\mathrm{t}_{2}, w_{\mathrm{i} 2}\right), \ldots,\left(\mathrm{t}_{\mathrm{j}}, \mathrm{w}_{\mathrm{ij}}\right), \ldots,\left(\mathrm{t}_{\mathrm{m}}, \mathrm{w}_{\mathrm{im}}\right), 1 / \mathrm{d}_{\mathrm{i}}\right)
$$

- Only terms with positive weights are kept.
- Terms are in alphabetic order.

Query data structure:
$\mathrm{q}:\left(\left(\mathrm{t}_{1}, \mathrm{q}_{1}\right),\left(\mathrm{t}_{2}, \mathrm{q}_{2}\right), \ldots,\left(\mathrm{t}_{\mathrm{j}}, \mathrm{q}_{\mathrm{j}}\right), \ldots,\left(\mathrm{t}_{\mathrm{m}}, \mathrm{q}_{\mathrm{m}}\right), 1 /|\mathrm{q}|\right)$
10/20/2005 1:58 PM

Observation

- Method 1 is not efficient
- Needs to access most non-zero entries in doc-term matrix.
- Solution: Use Index (Inverted File)
- Data structure to permit fast searching.
- Like an Index in the back of a text book.
- Key words --- page numbers.
- E.g, "Etzioni, 40, 55, 60-63, 89, 220"
- Lexicon
- Occurrences

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5
12

Search Processing (Overview)

1. Lexicon search

- E.g. looking in index to find entry

2. Retrieval of occurrences

- Seeing where term occurs

3. Manipulation of occurrences

- Going to the right page

Many Variations Possible

- Address space (flat, hierarchical)
- Record term-position information
- Precalculate TF-IDF info
- Stored header, font \& tag info
- Compression strategies

Using Inverted Files

Several data structures:

1. For each term t_{j}, create a list (inverted file list) that contains all document ids that have t_{j}.
$\mathrm{I}\left(\mathrm{t}_{\mathrm{j}}\right)=\left\{\left(\mathrm{d}_{1}, \mathrm{w}_{1 \mathrm{j}}\right),\left(\mathrm{d}_{2}, \mathrm{w}_{2 \mathrm{j}}\right), \ldots,\left(\mathrm{d}_{\mathrm{i}}, \mathrm{w}_{\mathrm{ij}}\right), \ldots,\left(\mathrm{d}_{\mathrm{n}}, \mathrm{w}_{\mathrm{nj}}\right)\right\}$

- d_{i} is the document id number of the ith document.
- Weights come from freq of term in doc
- Only entries with non-zero weights should be kept.

10/20/2005 1:58 PM
Copyright © Kambhampati / Weld 2002-5 17

Inverted Files

```
~
10 First entry is the word in position }1\mathrm{ (first word)
20 Entry 4562 is the word in position 4562 (4562 'nd word)
30 Last entry is the last word
36 An inverted file is a list of positions by word!
```


$\mathrm{a}(1,4,40)$
entry (11, 20,
entry (11, 20, 31)
file $(2,38)$
list $(5,41)$
position (9, 16, 26)
positions (44)
words (7)
10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5

Inverted Files for Multiple Documents

One method. Alta Vista uses alternative 10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 15

Inverted files continued

More data structures:
2. Normalization factors of documents are precomputed and stored in an array

$$
\mathrm{nf}[\mathrm{i}] \text { stores } 1 /\left|\mathrm{d}_{\mathrm{i}}\right| \text {. }
$$

Inverted files continued

More data structures:
3. Lexicon: a hash table for all terms in the collection.

- Inverted file lists are typically stored on disk.
- The number of distinct terms is usually very large.

Retrieval using Inverted files

initialize all $\operatorname{sim}\left(\mathrm{q}, \mathrm{d}_{\mathrm{i}}\right)=0$;
for each term t_{j} in q
\{ find $\mathrm{I}(\mathrm{t})$ using the hash table;

$$
\text { for each }\left(\mathrm{d}_{\mathrm{i}}, \mathrm{w}_{\mathrm{ij}}\right) \text { in } \mathrm{I}(\mathrm{t})
$$

$$
\left.\operatorname{sim}\left(\mathrm{q}, \mathrm{~d}_{\mathrm{i}}\right)+=\mathrm{q}_{\mathrm{j}} * \mathrm{w}_{\mathrm{ij}} ;\right\}
$$

for each document d_{i}
$\operatorname{sim}\left(\mathrm{q}, \mathrm{d}_{\mathrm{i}}\right)=\operatorname{sim}\left(\mathrm{q}, \mathrm{d}_{\mathrm{i}}\right) * \operatorname{nf}[\mathrm{i}] ;$
sort documents in descending similarities and display the top k to the user;

10/20/2005 1:58 PM

Efficient Retrieval

Example (Method 2): Suppose

$$
\mathrm{q}=\{(\mathrm{t} 1,1),(\mathrm{t} 3,1)\}, 1 /|\mathrm{q}|=0.7071
$$

$\mathrm{d} 1=\{(\mathrm{t} 1,2),(\mathrm{t} 2,1),(\mathrm{t} 3,1)\}, \mathrm{nf}[1]=0.4082$
$\mathrm{d} 2=\{(\mathrm{t} 2,2),(\mathrm{t} 3,1),(\mathrm{t} 4,1)\}, \mathrm{nf}[2]=0.4082$
$\mathrm{d} 3=\{(\mathrm{t} 1,1),(\mathrm{t} 3,1),(\mathrm{t} 4,1)\}, \mathrm{nf}[3]=0.5774$
$\mathrm{d} 4=\{(\mathrm{t} 1,2),(\mathrm{t} 2,1),(\mathrm{t} 3,2),(\mathrm{t} 4,2)\}, \mathrm{nf}[4]=0.2774$
$\mathrm{d} 5=\{(\mathrm{t} 2,2),(\mathrm{t} 4,1),(\mathrm{t} 5,2)\}, \operatorname{nf}[5]=0.3333$
$I(t 1)=\{(d 1,2),(d 3,1),(d 4,2)\}$
$\mathrm{I}(\mathrm{t} 2)=\{(\mathrm{d} 1,1),(\mathrm{d} 2,2),(\mathrm{d} 4,1),(\mathrm{d} 5,2)\}$
$I(t 3)=\{(d 1,1),(d 2,1),(d 3,1),(d 4,2)\}$
$I(t 4)=\{(d 2,1),(d 3,1),(d 4,1),(d 5,1)\}$
$I(t 5)=\{(d 5,2)\}$
10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 23

Digression...

- Data structures on disk...
- Revisiting CSE 326

Big O notation

Observations about Method 2

- If doc d doesn't contain any term of query q, then d won't be considered when evaluating q .
- Only non-zero entries in the columns of the document-term matrix which correspond to query terms ... are used to evaluate the query.
- Computes the similarities of multiple documents simultaneously (w.r.t. each query word)

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 22

```
q={(t1, 1),(t3, 1) }, 1/|q|=0.7071
            Efficient Retrieval
d1 = {(t1, 2), (t2, 1), (t3, 1) }, nf[1] = 0.4082
d2 ={(t2, 2),(t3,1),(t4, 1)}, nf[2]=0.4082
d2 ={(t2, ),(t3,1),(t4,1)}, nf[2]=0.4082
d4 ={(t1, 2), (t2, 1), (t3, 2), (t4, 2) }, nf[4] = 0.2774
d5 ={(t2, 2), (t4, 1), (t5, 2) }, nf[5]=0.3333
I(t1) = {(d1, 2), (d3, 1), (d4, 2) }
After t1 is processed:
I(t2) = {(d1, 1), (d2, 2), (d4, 1), (d5,
I}(\textrm{t}3)={(\textrm{d}1,1),(\textrm{d}2,1),(\textrm{d}3,1),(\textrm{d}4,2)
l
                                    \operatorname{sim}(q,d1)=3,\quad\operatorname{sim}(q,d2)=1,
                                    sim}(\textrm{q},\textrm{d}3)=
                                    \operatorname{sim}(q,d4)=4,\quad\operatorname{sim}(q,d5)=0
                                    After normalization:
                                    \operatorname{sim}(\textrm{q},\textrm{d}1)=.87, \operatorname{sim}(\textrm{q},\textrm{d}2)=.29,
                                    sim(q, d3) =.82
                                    \operatorname{sim}(q,d4)=.78,\quad\operatorname{sim}(q,d5)=0
    10/20/2005 1:58 PM
    Copyright © Kambhampati / Weld 2002-5
    24
```


Efficiency versus Flexibility

- Storing computed document weights is good for efficiency, but bad for flexibility.
- Recomputation needed if TF and IDF formulas change and/or TF and DF information changes.
- Flexibility improved by storing raw TF, DF information, but efficiency suffers.
- A compromise
- Store pre-computed TF weights of documents.
- Use IDF weights with query term TF weights instead of document term TF weights.
10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 25

The Lexicon

Grows Slowly (Heap's law)
$-O\left(n^{\beta}\right)$ where $n=$ text size; β is constant $\sim 0.4-0.6$

- E.g. for 1 GB corpus, lexicon $=5 \mathrm{Mb}$
- Can reduce with stemming (Porter algorithm)

Store lexicon in file in lexicographic order

- Each entry points to loc in occurrence file (aka inverted file list)

10/20/2005 1:58 PM

Memory Too Small?

- Merging
- When word is shared in two lexicons
- Concatenate occurrence lists
$-\mathrm{O}(\mathrm{n} 1+\mathrm{n} 2)$
- Overall complexity
- O(n log(n/M) 10/20/2005 $1: 58$ PM

Copyright © Kambhampati / Weld 2002-5

Stemming

Are there different index terms?

- retrieve, retrieving, retrieval, retrieved, retrieves...
- Stemming algorithm:
- (retrieve, retrieving, retrieval, retrieved, retrieves) \Rightarrow retriev
- Strips prefixes of suffixes (-s, -ed, -ly, -ness)
- Morphological stemming

Construction

- Build Trie (or hash table)
$\begin{array}{lllllllllllll}1 & 6 & 9 & 11 & 17 & 19 & 24 & 28 & 33 & 40 & 46 & 50 & 55 \\ 60\end{array}$
This is a text. A text has many words. Words are made from letters.

Stop lists

- Language-based stop list:
- words that bear little meaning
- 20-500 words
- http://www.dcs.gla.ac.ukidom/ir_resources/linguistic_utils/stop_words
- Subject-dependent stop lists
- Removing stop words
- From document
- From query

From Peter Brusilovsky Univ Pittsburg INFSCI 2140
10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 34

Compression

What Should We Compress?

- Repository
- Lexicon
- Inv Index

What properties do we want?

- Compression ratio
- Compression speed
- Decompression speed
- Memory requirements
- Pattern matching on compressed text
- Random access

10/20/2005 1:58 PM

Inverted File Compression

Each inverted list has the form $<f_{t} ; d_{1}, d_{2}, d_{3}, \ldots, d_{f_{t}}>$
A naïve representation results in a storage overhead of $(f+n) *\lceil\log N\rceil$
This can also be stored as $\left.<f_{t} ; d_{1}, d_{2}-d_{1}, \ldots, d_{f_{t}}-d_{f_{t-1}}\right\rangle$
Each difference is called a d-gap. Since $\sum(d-g a p s) \leq N$,
each pointer requires fewer than $\lceil\log N\rceil$ bits.
Trick is encoding since worst case
Assume d-gap representation for the rest of the talk, unless stated Assume
otherwise

Slides adapted from Tapas Kanungo and David Mount, Univ Maryland 10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5

Text Compression

Two classes of text compression methods

- Symbolwise (or statistical) methods
- Estimate probabilities of symbols - modeling step
- Code one symbol at a time - coding step
- Use shorter code for the most likely symbol
- Usually based on either arithmetic or Huffman coding

Dictionary methods

- Replace fragments of text with a single code word
- Typically an index to an entry in the dictionary. - eg: Ziv-Lempel coding: replaces strings of characters with a pointer to a previous occurrence of the string.
- No probability estimates needed

Symbolwise methods are more suited for coding d-gaps 10/20/2005 1:58 PM

Conclusion

Local methods best
Parameterized global models \sim non-parameterized

- Pointers not scattered randomly in file

In practice, best index compression algorithm is:

- Local Bernoulli method (using Golomb coding)

Compressed inverted indices usually faster+smaller than

- Signature files
- Bitmaps

Local < Parameterized Global < Non-parameterized Global

10/20/2005 1:58 PM
Copyright © Kambhampati / Weld 2002-5
41

Classifying d-gap Compression Methods:

- Global: each list compressed using same model
- non-parameterized: probability distribution for d-gap sizes is predetermined.
- parameterized: probability distribution is adjusted according to certain parameters of the collection.
- Local: model is adjusted according to some parameter, like the frequency of the term
- By definition, local methods are parameterized.

LSI Intuition

- The key idea is to map documents and queries into a lower dimensional space (i.e., composed of higher level concepts which are in fewer number than the index terms)
- Retrieval in this reduced concept space might be superior to retrieval in the space of index terms

10/20/2005 1:58 PM
Copyright © Kambhampati / Weld 2002-5
45

Latent Semantic Indexing

- Creates modified vector space

- Captures transitive co-occurrence information
- If docs A \& B don't share any words, with each other, but both share lots of words with doc C, then A \& B will be considered similar
- Handles polysemy (adam's apple) \& synonymy
- Simulates query expansion and document clustering (sort of)

Latent Semantic Indexing Defns

- Let \mathbf{m} be the total number of index terms
- Let n be the number of documents
- Let [Aij] be a term-document matrix
- With m rows and n columns
- Entries = weights, wij, associated with the pair [ki,dj]
- The weights can be computed with tf-idf

LSI in a Nutshell

Linear Algebra Review

- Let A be a matrix
- X is an Eigenvector of A if
$-A^{*} X=\lambda X$

- λ is an Eigenvalue
- Transpose:

Singular Value Decomposition

- Factor [Aij] matrix into 3 matrices as follows:
- (Aij) $=(\mathrm{U})(\mathrm{S})(V)^{\mathrm{t}}$
- (U) is the matrix of eigenvectors derived from (A)(A) ${ }^{t}$
$-(\mathrm{V})^{\mathrm{t}}$ is the matrix of eigenvectors derived from $(\mathrm{A})^{\mathrm{t}}(\mathrm{A})$
-(S) is an $r x r$ diagonal matrix of singular values
- $r=\min (t, n)$ that is, the rank of (Aij)
- Singular values are the positive square roots of the eigen values of $(A)(A)^{t}$ (also $\left.(A)^{t}(A)\right)$

10/20/2005 1:58 PM
Copyright © Kambhampati / Weld 2002-5

Now to Reduce Dimensions...

- In the matrix (S), select k largest singular values
- Keep the corresponding columns in (U) and (V) ${ }^{\mathrm{t}}$
- The resultant matrix is called $(\mathrm{M})_{\mathrm{k}}$ and is given by $-(\mathrm{M})_{k}=(\mathrm{U})_{k}(\mathrm{~S})_{k}(\mathrm{~V})_{k}^{t_{k}}$
- where $k, k<r$, is the dimensionality of the concept space
- The parameter k should be
- large enough to allow fitting the characteristics of the data
- small enough to filter out the non-relevant representational details 10/20/2005 1:58 PM

The classic issue
over-fiting
10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5

Coordinate transformation inherent in LSI

$$
\mathrm{M}=\mathrm{US} \mathrm{~V}^{\mathrm{T}}
$$

For $\mathrm{k}=2$, the mapping is:
controllability
observability

$\begin{array}{llll} \\ \text {-observability } & 1.6678618 & -0.14623132 \\ \text { realization } & 1.3821706 & -1.0087909\end{array}$
$\begin{array}{llll}\text { reairation } & 1.3821706 & -1.0087909 \\ \text { feedback } & & 0.7533309 & 1.05282\end{array}$
$\begin{array}{lll}\text { feedback } & 0.7533309 & 1.05282 \\ \text { controller } & 1.4372339 & 0.86141896\end{array}$
$\begin{array}{lll}\text { controller } & 1.4372339 & 0.86141896 \\ \text { observer } & 1.6259657 & 0.82628685\end{array}$
$\begin{array}{llll}\text { observer } & 1.6259657 & 0.82628685 \\ \text { Transfer function } & 1.0972775 & 0.38029274\end{array}$
Transfer function 1.09727750 .38029274
polynomial
matrices
matrices

10/20/2005 1:58 PM

Calculating Information Loss

In agreement with our intuition, most of the variance in the data is captured two principal compripal components. In fact, if we were to retain only these terms), the fraction of variance that our two-dimensional representation retains is $\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right) / \sum_{i=1}^{6} \lambda_{i}^{2}=0.925$; ie., only 7.5% of the information has been lost (in a mean-square sense). If we represent the documents in the new twodimensional principal component space, the coefficients for each document correspond to the first two columns of the U matrix:
d1 $\quad 30.8998 \quad-11.4912$
d2 $\quad 30.3131-10.7801$
$\begin{array}{lrr}\text { d3 } & 18.0007 & -7.7138 \\ \text { d4 } & 8.3765 & -3.5612\end{array} \quad$ Should clean this up into a d5 $\quad \begin{array}{rrr}52.7057 & -20.6051 & \text { slide summarizing the info }\end{array}$ $\begin{array}{llll}\text { d6 } & 14.2118 & 21.8263\end{array} \quad$ loss formula
$\begin{array}{lll}\text { d8 } & 11.5080 & 28.0101\end{array}$
$\begin{array}{lrr}\text { d9 } & 9.5259 & 17.7666\end{array}$
d10 19.921
10/20/2005 1:58 PM
Copyright © Kambhampati / Weld 2002-5
60

What LSI can do

- LSI analysis effectively does
- Dimensionality reduction
- Noise reduction
- Exploitation of redundant data
- Correlation analysis and Query expansion (with related words)
- Any one of the individual effects can be achieved with simpler techniques (see thesaurus construction). But LSI does all of them together.

What LSI can do - LSI analysis effectively does - Dimensionality reduction - Noise reduction - Exploitation of redundant data - Correlation analysis and Query expansion (with related words) - Any one of the individual effects can be achieved with simpler techniques (see thesaurus construction). But LSI does all of them together.		
10/20/2005 1:58 PM	Copyright © Kamblampati / Weld 2002-5	62

LSI is not the most sophisticated dimensionality reduction technique
Dimensionality reduction is a useful technique for any classification/regression problem

- Text retrieval can be seen as a classification problem
- Many other dimensionality reduction techniques
- Neural nets, support vector machines etc.
- Compared to them, LSI is limited because it's linear
- It cannot capture non-linear dependencies between original dimensions
- E.g. \qquad
10/20/2005 1:58 PM

