
1

10/20/2005 1:58 PM 1Copyright © Kambhampati / Weld 2002-5

CSE 454

Inverted Indices
(with Compression & LSI)

10/20/2005 1:58 PM 2Copyright © Kambhampati / Weld 2002-5

Project Proto-Idea
• Search + Tagging + Wiki + Social Network = ?

• Project Reality
– Part 1 handed out tomorrow
– If you want to do something different, let me know by

tomorrow

10/20/2005 1:58 PM 3Copyright © Kambhampati / Weld 2002-5

Standard Web Search Engine Architecture

crawl the
web

create an
inverted
index

store documents,
check for duplicates,

extract links

inverted
index

DocIds

Slide adapted from Marty Hearst / UC Berkeley]

Search
engine
servers

user
query

show results
To user

10/20/2005 1:58 PM 4Copyright © Kambhampati / Weld 2002-5

Review: Precision & Recall
• Precision

– Proportion of selected
items that are correct

• Recall

– Proportion of target items
that were selected

• Precision-Recall curve
– Shows tradeoff

tn

fp tp fn

System returned these

Actual relevant docs
fptp

tp
+

fntp
tp
+

Recall

Precision

10/20/2005 1:58 PM 5Copyright © Kambhampati / Weld 2002-5

Review
• Vector Space Representation

– Dot Product as Similarity Metric

• TF-IDF for Computing Weights
– wij = f(i,j) * log(N/ni)

• But How Process Efficiently? documents

te
rm

s

q dj
t1

t2

10/20/2005 1:58 PM 6Copyright © Kambhampati / Weld 2002-5

Today’s Class
• Efficient query processing

– Inverted indicies (creation & query processing)
– Compression

• Latent Semantic Indexing (LSI)

2

10/20/2005 1:58 PM 7Copyright © Kambhampati / Weld 2002-5

Course Overview

Systems Foundation: Networking, Synchronization & Monitors

Datamining

Cluster Computing

Crawler Architecture

Case Studies: Nutch, Google, Altavista

Information Retrieval
Precision vs Recall
Inverted Indicies

P2P Security
Web Services
Semantic Web

Info
Extraction Ecommerce

Advt

New
Stuff

?

10/20/2005 1:58 PM 8Copyright © Kambhampati / Weld 2002-5

Search Engine Components

• Spider
– Getting the pages

• Indexing
– Storing (e.g. in an inverted file)

• Query Processing
– Booleans, …

• Ranking
– Vector space model, PageRank, anchor text analysis

• Summaries
• Refinement

10/20/2005 1:58 PM 9Copyright © Kambhampati / Weld 2002-5

Efficient Retrieval

Document-term matrix
t1 t2 . . . tj . . . tm nf

d1 w11 w12 . . . w1j . . . w1m 1/|d1|
d2 w21 w22 . . . w2j . . . w2m 1/|d2|

.
di wi1 wi2 . . . wij . . . wim 1/|di|

.
dn wn1 wn2 . . . wnj . . . wnm 1/|dn|

wij is the weight of term tj in document di

Most wij’s will be zero.
10/20/2005 1:58 PM 10Copyright © Kambhampati / Weld 2002-5

Naïve Retrieval
Consider query q = (q1, q2, …, qj, …, qn), nf = 1/|q|.

How evaluate q?
(i.e., compute the similarity between q and every document)?

Method 1: Compare q w/ every document directly.
Document data structure:

di : ((t1, wi1), (t2, wi2), . . ., (tj, wij), . . ., (tm, wim), 1/|di|)
– Only terms with positive weights are kept.
– Terms are in alphabetic order.

Query data structure:
q : ((t1, q1), (t2, q2), . . ., (tj, qj), . . ., (tm, qm), 1/|q|)

10/20/2005 1:58 PM 11Copyright © Kambhampati / Weld 2002-5

Naïve Retrieval (continued)

Method 1: Compare q with documents directly

initialize all sim(q, di) = 0;
for each document di (i = 1, …, n)

{ for each term tj (j = 1, …, m)
if tj appears in both q and di

sim(q, di) += qj ∗wij;
sim(q, di) = sim(q, di) ∗(1/|q|) ∗(1/|di|); }

sort documents in descending similarities;
display the top k to the user;

10/20/2005 1:58 PM 12Copyright © Kambhampati / Weld 2002-5

Observation

• Method 1 is not efficient
– Needs to access most non-zero entries in doc-term matrix.

• Solution: Use Index (Inverted File)
– Data structure to permit fast searching.

• Like an Index in the back of a text book.
– Key words --- page numbers.
– E.g, “Etzioni, 40, 55, 60-63, 89, 220”
– Lexicon
– Occurrences

3

10/20/2005 1:58 PM 13Copyright © Kambhampati / Weld 2002-5

Search Processing (Overview)
1. Lexicon search

– E.g. looking in index to find entry
2. Retrieval of occurrences

– Seeing where term occurs
3. Manipulation of occurrences

– Going to the right page

10/20/2005 1:58 PM 14Copyright © Kambhampati / Weld 2002-5

Inverted Files

A file is a list of words by position
First entry is the word in position 1 (first word)
Entry 4562 is the word in position 4562 (4562nd word)
Last entry is the last word
An inverted file is a list of positions by word!

POS
1

10

20

30

36

FILE

a (1, 4, 40)
entry (11, 20, 31)
file (2, 38)
list (5, 41)
position (9, 16, 26)
positions (44)
word (14, 19, 24, 29, 35, 45)
words (7)
4562 (21, 27)

INVERTED FILE

aka “Index”

10/20/2005 1:58 PM 15Copyright © Kambhampati / Weld 2002-5

Inverted Files for Multiple Documents

107 4 322 354 381 405
232 6 15 195 248 1897 1951 2192
677 1 481
713 3 42 312 802

WORD NDOCS PTR
jezebel 20
jezer 3
jezerit 1
jeziah 1
jeziel 1
jezliah 1

jezoar 1
jezrahliah 1
jezreel 39

jezoar

34 6 1 118 2087 3922 3981 5002
44 3 215 2291 3010
56 4 5 22 134 992

DOCID OCCUR POS 1 POS 2 . . .

566 3 203 245 287

67 1 132

. . .

“jezebel” occurs
6 times in document 34,
3 times in document 44,
4 times in document 56 . . .

LEXICON

OCCURENCE
INDEX

• One method. Alta Vista uses alternative

…

10/20/2005 1:58 PM 16Copyright © Kambhampati / Weld 2002-5

Many Variations Possible
• Address space (flat, hierarchical)
• Record term-position information
• Precalculate TF-IDF info
• Stored header, font & tag info
• Compression strategies

10/20/2005 1:58 PM 17Copyright © Kambhampati / Weld 2002-5

Using Inverted Files

Several data structures:
1. For each term tj, create a list (inverted file list) that

contains all document ids that have tj.
I(tj) = { (d1, w1j), (d2, w2j), …, (di, wij), …, (dn, wnj) }

– di is the document id number of the ith document.
– Weights come from freq of term in doc
– Only entries with non-zero weights should be kept.

10/20/2005 1:58 PM 18Copyright © Kambhampati / Weld 2002-5

Inverted files continued

More data structures:

2. Normalization factors of documents are pre-
computed and stored in an array

nf[i] stores 1/|di|.

4

10/20/2005 1:58 PM 19Copyright © Kambhampati / Weld 2002-5

Inverted files continued

More data structures:

3. Lexicon: a hash table for all terms in the collection.
.

tj pointer to I(tj)
.

– Inverted file lists are typically stored on disk.
– The number of distinct terms is usually very large.

10/20/2005 1:58 PM 20Copyright © Kambhampati / Weld 2002-5

Digression…
• Data structures on disk…
• Revisiting CSE 326

Big O notation

10/20/2005 1:58 PM 21Copyright © Kambhampati / Weld 2002-5

Retrieval using Inverted files
initialize all sim(q, di) = 0;
for each term tj in q

{ find I(t) using the hash table;
for each (di, wij) in I(t)

sim(q, di) += qj ∗wij; }
for each document di

sim(q, di) = sim(q, di) ∗ nf[i];
sort documents in descending similarities and

display the top k to the user;
10/20/2005 1:58 PM 22Copyright © Kambhampati / Weld 2002-5

Observations about Method 2
• If doc d doesn’t contain any term of query q,

then d won’t be considered when evaluating q.

• Only non-zero entries in the columns of the
document-term matrix which correspond to
query terms … are used to evaluate the query.

• Computes the similarities of multiple documents
simultaneously (w.r.t. each query word)

10/20/2005 1:58 PM 23Copyright © Kambhampati / Weld 2002-5

Efficient Retrieval

Example (Method 2): Suppose
q = { (t1, 1), (t3, 1) }, 1/|q| = 0.7071

d1 = { (t1, 2), (t2, 1), (t3, 1) }, nf[1] = 0.4082
d2 = { (t2, 2), (t3, 1), (t4, 1) }, nf[2] = 0.4082
d3 = { (t1, 1), (t3, 1), (t4, 1) }, nf[3] = 0.5774
d4 = { (t1, 2), (t2, 1), (t3, 2), (t4, 2) }, nf[4] = 0.2774
d5 = { (t2, 2), (t4, 1), (t5, 2) }, nf[5] = 0.3333
I(t1) = { (d1, 2), (d3, 1), (d4, 2) }
I(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5, 2) }
I(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4, 2) }
I(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5, 1) }
I(t5) = { (d5, 2) }

10/20/2005 1:58 PM 24Copyright © Kambhampati / Weld 2002-5

Efficient Retrieval q = { (t1, 1), (t3, 1) }, 1/|q| = 0.7071

d1 = { (t1, 2), (t2, 1), (t3, 1) }, nf[1] = 0.4082
d2 = { (t2, 2), (t3, 1), (t4, 1) }, nf[2] = 0.4082
d3 = { (t1, 1), (t3, 1), (t4, 1) }, nf[3] = 0.5774
d4 = { (t1, 2), (t2, 1), (t3, 2), (t4, 2) }, nf[4] = 0.2774
d5 = { (t2, 2), (t4, 1), (t5, 2) }, nf[5] = 0.3333

I(t1) = { (d1, 2), (d3, 1), (d4, 2) }
I(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5, 2) }
I(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4, 2) }
I(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5, 1) }
I(t5) = { (d5, 2) }

After t1 is processed:
sim(q, d1) = 2, sim(q, d2) = 0,
sim(q, d3) = 1
sim(q, d4) = 2, sim(q, d5) = 0

After t3 is processed:
sim(q, d1) = 3, sim(q, d2) = 1,
sim(q, d3) = 2
sim(q, d4) = 4, sim(q, d5) = 0

After normalization:
sim(q, d1) = .87, sim(q, d2) = .29,
sim(q, d3) = .82
sim(q, d4) = .78, sim(q, d5) = 0

5

10/20/2005 1:58 PM 25Copyright © Kambhampati / Weld 2002-5

Efficiency versus Flexibility

• Storing computed document weights is good
for efficiency, but bad for flexibility.

– Recomputation needed if TF and IDF formulas
change and/or TF and DF information changes.

• Flexibility improved by storing raw TF, DF
information, but efficiency suffers.

• A compromise
– Store pre-computed TF weights of documents.
– Use IDF weights with query term TF weights

instead of document term TF weights.
10/20/2005 1:58 PM 26Copyright © Kambhampati / Weld 2002-5

How Inverted Files are Created

Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

ptrs
to

docs

10/20/2005 1:58 PM 27Copyright © Kambhampati / Weld 2002-5

Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

Repository
• File containing all documents downloaded
• Each doc has unique ID
• Ptr file maps from IDs to start of doc in repository

ptrs
to

docs

10/20/2005 1:58 PM 28Copyright © Kambhampati / Weld 2002-5

Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

ptrs
to

docs

NF
• Length of each document

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2

Forward Index

Pos
1
2
3
4
5
6
7

10/20/2005 1:58 PM 29Copyright © Kambhampati / Weld 2002-5

Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

ptrs
to

docs

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sorted Index

(positional info as well)

10/20/2005 1:58 PM 30Copyright © Kambhampati / Weld 2002-5

Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

WORD NDOCS PTR
jezebel 20
jezer 3
jezerit 1
jeziah 1
jeziel 1
jezliah 1
jezoar 1
jezrahliah 1
jezreel 39

jezoar

34 6 1 118 2087 3922 3981 5002
44 3 215 2291 3010
56 4 5 22 134 992

DOCID OCCUR POS 1 POS 2 . . .

566 3 203 245 287

67 1 132

. . .

ptrs
to

docs

Lexicon

Inverted File List

6

10/20/2005 1:58 PM 31Copyright © Kambhampati / Weld 2002-5

The Lexicon

• Grows Slowly (Heap’s law)
– O(nβ) where n=text size; β is constant ~0.4 – 0.6
– E.g. for 1GB corpus, lexicon = 5Mb
– Can reduce with stemming (Porter algorithm)

• Store lexicon in file in lexicographic order
– Each entry points to loc in occurrence file

(aka inverted file list)

10/20/2005 1:58 PM 32Copyright © Kambhampati / Weld 2002-5

Construction
• Build Trie (or hash table)

1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

letters: 60

text: 11, 19

words: 33, 40

made: 50

many: 28

l
m a

d

n
t

w

10/20/2005 1:58 PM 33Copyright © Kambhampati / Weld 2002-5

Memory Too Small?

1 2 3 4

1-2

1-4

3-4

• Merging
– When word is shared in two lexicons
– Concatenate occurrence lists
– O(n1 + n2)

• Overall complexity
– O(n log(n/M)

10/20/2005 1:58 PM 34Copyright © Kambhampati / Weld 2002-5

Stop lists
• Language-based stop list:

– words that bear little meaning
– 20-500 words
– http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

• Subject-dependent stop lists
• Removing stop words

– From document
– From query

From Peter Brusilovsky Univ Pittsburg INFSCI 2140

10/20/2005 1:58 PM 35Copyright © Kambhampati / Weld 2002-5

Stemming
• Are there different index terms?

– retrieve, retrieving, retrieval, retrieved, retrieves…
• Stemming algorithm:

– (retrieve, retrieving, retrieval, retrieved, retrieves)
retriev

– Strips prefixes of suffixes (-s, -ed, -ly, -ness)
– Morphological stemming

10/20/2005 1:58 PM 36Copyright © Kambhampati / Weld 2002-5

Stemming Continued
• Can reduce vocabulary by ~ 1/3
• C, Java, Perl versions, python, c#

www.tartarus.org/~martin/PorterStemmer
• Criterion for removing a suffix

– Does "a document is about w1" mean the same as
– a "a document about w2"

• Problems: sand / sander & wand / wander

7

10/20/2005 1:58 PM 37Copyright © Kambhampati / Weld 2002-5

Compression
• What Should We Compress?

– Repository
– Lexicon
– Inv Index

• What properties do we want?
– Compression ratio
– Compression speed
– Decompression speed
– Memory requirements
– Pattern matching on compressed text
– Random access

10/20/2005 1:58 PM 38Copyright © Kambhampati / Weld 2002-5

Inverted File Compression

Each inverted list has the form 1 2 3 ; , , , ... ,
tt ff d d d d< >

A naïve representation results in a storage overhead of () * logf n N+ ⎡ ⎤

This can also be stored as 1 2 1 1; , ,...,
t tt f ff d d d d d −< − − >

Each difference is called a d-gap. Since () ,d gaps N− ≤∑
each pointer requires fewer than

Trick is encoding …. since worst case ….

log N⎡ ⎤ bits.

Assume d-gap representation for the rest of the talk, unless stated
otherwise

Slides adapted from Tapas Kanungo and David Mount, Univ Maryland

10/20/2005 1:58 PM 39Copyright © Kambhampati / Weld 2002-5

Text Compression
Two classes of text compression methods
• Symbolwise (or statistical) methods

– Estimate probabilities of symbols - modeling step
– Code one symbol at a time - coding step
– Use shorter code for the most likely symbol
– Usually based on either arithmetic or Huffman coding

• Dictionary methods
– Replace fragments of text with a single code word
– Typically an index to an entry in the dictionary.

• eg: Ziv-Lempel coding: replaces strings of characters with a pointer to
a previous occurrence of the string.

– No probability estimates needed

Symbolwise methods are more suited for coding d-gaps

10/20/2005 1:58 PM 40Copyright © Kambhampati / Weld 2002-5

Classifying d-gap Compression Methods:

• Global: each list compressed using same model
– non-parameterized: probability distribution for d-gap sizes is

predetermined.
– parameterized: probability distribution is adjusted according to

certain parameters of the collection.

• Local: model is adjusted according to some parameter,
like the frequency of the term

• By definition, local methods are parameterized.

10/20/2005 1:58 PM 41Copyright © Kambhampati / Weld 2002-5

Conclusion
• Local methods best
• Parameterized global models ~ non-parameterized

– Pointers not scattered randomly in file
• In practice, best index compression algorithm is:

– Local Bernoulli method (using Golomb coding)
• Compressed inverted indices usually faster+smaller than

– Signature files
– Bitmaps

Local < Parameterized Global < Non-parameterized Global

Not by much

10/20/2005 1:58 PM 42Copyright © Kambhampati / Weld 2002-5

-- Relevant docs may not have the query terms
but may have many “related” terms

-- Irrelevant docs may have the query terms
but may not have any “related” terms

Motivating the Need for LSI

8

10/20/2005 1:58 PM 43Copyright © Kambhampati / Weld 2002-5

a b c d e f g h I
Interface 0 0 1 0 0 0 0 0 0
User 0 1 1 0 1 0 0 0 0
System 2 1 1 0 0 0 0 0 0
Human 1 0 0 1 0 0 0 0 0
Computer 0 1 0 1 0 0 0 0 0
Response 0 1 0 0 1 0 0 0 0
Time 0 1 0 0 1 0 0 0 0
EPS 1 0 1 0 0 0 0 0 0
Survey 0 1 0 0 0 0 0 0 1
Trees 0 0 0 0 0 1 1 1 0
Graph 0 0 0 0 0 0 1 1 1
Minors 0 0 0 0 0 0 0 1 1

Terms and Docs as vectors in
“factor” space

Document vector

Term vector

If terms are independent, the
T-T similarity matrix would
be diagonal

=If it is not diagonal, we can
use the correlations to add
related terms to the query

=But can also ask the question
“Are there independent

dimensions which define the
space where terms & docs are
vectors ?”

In addition to doc-doc similarity,
We can compute term-term distance

10/20/2005 1:58 PM 44Copyright © Kambhampati / Weld 2002-5

Latent Semantic Indexing
• Creates modified vector space
• Captures transitive co-occurrence information

– If docs A & B don’t share any words, with each other,
but both share lots of words with doc C, then A & B will
be considered similar

– Handles polysemy (adam’s apple) & synonymy
• Simulates query expansion and document

clustering (sort of)

10/20/2005 1:58 PM 45Copyright © Kambhampati / Weld 2002-5

• The key idea is to map documents and queries
into a lower dimensional space (i.e., composed
of higher level concepts which are in fewer
number than the index terms)

• Retrieval in this reduced concept space might
be superior to retrieval in the space of index
terms

LSI Intuition

10/20/2005 1:58 PM 46Copyright © Kambhampati / Weld 2002-5

Visual Example
• Classify Fish

– Length
– Height

10/20/2005 1:58 PM 47Copyright © Kambhampati / Weld 2002-5

Move Origin
• To center of centroid
• But are these the best axes?

Better if one axis accounts for most data variation
What should we call the red axis?

10/20/2005 1:58 PM 48Copyright © Kambhampati / Weld 2002-5

We retain 1.75/2.00 x 100 (87.5%)
of the original variation.

Thus, by discarding the yellow axis
we lose only 12.5%
of the original information.

Reduce Dimensions

• What if we only consider “size”

9

10/20/2005 1:58 PM 49Copyright © Kambhampati / Weld 2002-5

Not Always Appropriate

10/20/2005 1:58 PM 50Copyright © Kambhampati / Weld 2002-5

Linear Algebra Review
• Let A be a matrix
• X is an Eigenvector of A if

– A*X= λX
• λ is an Eigenvalue
• Transpose:

A X X* = λ

A
T

=

10/20/2005 1:58 PM 51Copyright © Kambhampati / Weld 2002-5

• Let m be the total number of index terms
• Let n be the number of documents
• Let [Aij] be a term-document matrix

– With m rows and n columns
– Entries = weights, wij, associated with the pair [ki,dj]

• The weights can be computed with tf-idf

Latent Semantic Indexing Defns

10/20/2005 1:58 PM 52Copyright © Kambhampati / Weld 2002-5

• Factor [Aij] matrix into 3 matrices as follows:
• (Aij) = (U) (S) (V)t

– (U) is the matrix of eigenvectors derived from (A)(A)t

– (V)t is the matrix of eigenvectors derived from (A)t(A)
– (S) is an r x r diagonal matrix of singular values

• r = min(t,n) that is, the rank of (Aij)
• Singular values are the positive square roots of the eigen

values of (A)(A)t (also (A)t(A))
U and V are

orthogonal

matrices

Singular Value Decomposition

10/20/2005 1:58 PM 53Copyright © Kambhampati / Weld 2002-5

Vk
t =

=
mxn
Âk

mxk
Uk

kxk
Dk

kxn
VT

k

Terms

Documents

⇒

Recreate Matrix:
Multiply to produce
approximate term-
document matrix.
Use new matrix to

process queries

Uk
Sk

LSI in a Nutshell

=

=
m xn

A
m xr

U
rxr
D

rxn
V T

T erms

D ocuments

Singular Value
Decomposition

(SVD):
Convert term-document
matrix into 3 matrices

U, S and V

M U S Vt

Vk
t =

=
mxn
Âk

mxk
Uk

kxk
Dk

kxn
VT

k

Terms

Documents

⇒

Reduce Dimensionality:
Throw out low-order

rows and columns

Uk
Sk

10/20/2005 1:58 PM 54Copyright © Kambhampati / Weld 2002-5

Example

term ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

controllability 1 1 0 0 1 0 0 1

observability 1 0 0 0 1 1 0 1

realization 1 0 1 0 1 0 1 0

feedback 0 1 0 0 0 1 0 0

controller 0 1 0 0 1 1 0 0

observer 0 1 1 0 1 1 0 0
transfer
function 0 0 0 0 1 1 0 0

polynomial 0 0 0 0 1 0 1 0

matrices 0 0 0 0 1 0 1 1

U (9x7) =
0.3996 -0.1037 0.5606 -0.3717 -0.3919 -0.3482 0.1029
0.4180 -0.0641 0.4878 0.1566 0.5771 0.1981 -0.1094
0.3464 -0.4422 -0.3997 -0.5142 0.2787 0.0102 -0.2857
0.1888 0.4615 0.0049 -0.0279 -0.2087 0.4193 -0.6629
0.3602 0.3776 -0.0914 0.1596 -0.2045 -0.3701 -0.1023
0.4075 0.3622 -0.3657 -0.2684 -0.0174 0.2711 0.5676
0.2750 0.1667 -0.1303 0.4376 0.3844 -0.3066 0.1230
0.2259 -0.3096 -0.3579 0.3127 -0.2406 -0.3122 -0.2611
0.2958 -0.4232 0.0277 0.4305 -0.3800 0.5114 0.2010

S (7x7) =
3.9901 0 0 0 0 0 0

0 2.2813 0 0 0 0 0
0 0 1.6705 0 0 0 0
0 0 0 1.3522 0 0 0
0 0 0 0 1.1818 0 0
0 0 0 0 0 0.6623 0
0 0 0 0 0 0 0.6487

V (7x8) =
0.2917 -0.2674 0.3883 -0.5393 0.3926 -0.2112 -0.4505
0.3399 0.4811 0.0649 -0.3760 -0.6959 -0.0421 -0.1462
0.1889 -0.0351 -0.4582 -0.5788 0.2211 0.4247 0.4346

-0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000
0.6838 -0.1913 -0.1609 0.2535 0.0050 -0.5229 0.3636
0.4134 0.5716 -0.0566 0.3383 0.4493 0.3198 -0.2839
0.2176 -0.5151 -0.4369 0.1694 -0.2893 0.3161 -0.5330
0.2791 -0.2591 0.6442 0.1593 -0.1648 0.5455 0.2998This happens to be a rank-7 matrix

-so only 7 dimensions required
Singular values = Sqrt of Eigen values of AAT

T

10

10/20/2005 1:58 PM 55Copyright © Kambhampati / Weld 2002-5

Now to Reduce Dimensions…
• In the matrix (S), select k largest singular values
• Keep the corresponding columns in (U) and (V)t

• The resultant matrix is called (M)k and is given by
– (M)k = (U)k (S)k (V)t

k

– where k, k < r, is the dimensionality of the concept space
• The parameter k should be

– large enough to allow fitting the characteristics of the data
– small enough to filter out the non-relevant representational

details

The classic

over-fitt
ing issue

10/20/2005 1:58 PM 56Copyright © Kambhampati / Weld 2002-5

U2 (9x2) =
0.3996 -0.1037
0.4180 -0.0641
0.3464 -0.4422
0.1888 0.4615
0.3602 0.3776
0.4075 0.3622
0.2750 0.1667
0.2259 -0.3096
0.2958 -0.4232

S2 (2x2) =
3.9901 0

0 2.2813

V2 (8x2) =
0.2917 -0.2674
0.3399 0.4811
0.1889 -0.0351

-0.0000 -0.0000
0.6838 -0.1913
0.4134 0.5716
0.2176 -0.5151
0.2791 -0.2591

U (9x7) =
0.3996 -0.1037 0.5606 -0.3717 -0.3919 -0.3482 0.1029
0.4180 -0.0641 0.4878 0.1566 0.5771 0.1981 -0.1094
0.3464 -0.4422 -0.3997 -0.5142 0.2787 0.0102 -0.2857
0.1888 0.4615 0.0049 -0.0279 -0.2087 0.4193 -0.6629
0.3602 0.3776 -0.0914 0.1596 -0.2045 -0.3701 -0.1023
0.4075 0.3622 -0.3657 -0.2684 -0.0174 0.2711 0.5676
0.2750 0.1667 -0.1303 0.4376 0.3844 -0.3066 0.1230
0.2259 -0.3096 -0.3579 0.3127 -0.2406 -0.3122 -0.2611
0.2958 -0.4232 0.0277 0.4305 -0.3800 0.5114 0.2010

S (7x7) =
3.9901 0 0 0 0 0 0

0 2.2813 0 0 0 0 0
0 0 1.6705 0 0 0 0
0 0 0 1.3522 0 0 0
0 0 0 0 1.1818 0 0
0 0 0 0 0 0.6623 0
0 0 0 0 0 0 0.6487

V (7x8) =
0.2917 -0.2674 0.3883 -0.5393 0.3926 -0.2112 -0.4505
0.3399 0.4811 0.0649 -0.3760 -0.6959 -0.0421 -0.1462
0.1889 -0.0351 -0.4582 -0.5788 0.2211 0.4247 0.4346

-0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000
0.6838 -0.1913 -0.1609 0.2535 0.0050 -0.5229 0.3636
0.4134 0.5716 -0.0566 0.3383 0.4493 0.3198 -0.2839
0.2176 -0.5151 -0.4369 0.1694 -0.2893 0.3161 -0.5330
0.2791 -0.2591 0.6442 0.1593 -0.1648 0.5455 0.2998

U2*S2*V2 will be a 9x8 matrix
That approximates original matrix

T

Formally, this will be the rank-k (2)
matrix that is closest to M in the
matrix norm sense

10/20/2005 1:58 PM 57Copyright © Kambhampati / Weld 2002-5

term ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

controllability 1 1 0 0 1 0 0 1

observability 1 0 0 0 1 1 0 1

realization 1 0 1 0 1 0 1 0

feedback 0 1 0 0 0 1 0 0

controller 0 1 0 0 1 1 0 0

observer 0 1 1 0 1 1 0 0
transfer
function 0 0 0 0 1 1 0 0

polynomial 0 0 0 0 1 0 1 0

matrices 0 0 0 0 1 0 1 1

term ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

controllability 1 1 0 0 1 0 0 1

observability 1 0 0 0 1 1 0 1

realization 1 0 1 0 1 0 1 0

feedback 0 1 0 0 0 1 0 0

controller 0 1 0 0 1 1 0 0

observer 0 1 1 0 1 1 0 0
transfer
function 0 0 0 0 1 1 0 0

polynomial 0 0 0 0 1 0 1 0

matrices 0 0 0 0 1 0 1 1

termterm ch2ch2 ch3ch3 ch4ch4 ch5ch5 ch6ch6 ch7ch7 ch8ch8 ch9ch9

controllabilitycontrollability 11 11 00 00 11 00 00 11

observabilityobservability 11 00 00 00 11 11 00 11

realizationrealization 11 00 11 00 11 00 11 00

feedbackfeedback 00 11 00 00 00 11 00 00

controllercontroller 00 11 00 00 11 11 00 00

observerobserver 00 11 11 00 11 11 00 00
transfer
function
transfer
function 00 00 00 00 11 11 00 00

polynomialpolynomial 00 00 00 00 11 00 11 00

matricesmatrices 00 00 00 00 11 00 11 11

K=2

K=6
One component ignored

5 components ignored

U6S6V6
T

U2S2V2
T

USVT

0.52835834 0.42813724 0.30949408 0.0 1.1355368 0.5239192 0.46880865 0.5063048

0.5256176 0.49655432 0.3201918 0.0 1.1684579 0.6059082 0.4382505 0.50338876

0.6729299 -0.015529543 0.29650056 0.0 1.1381099 -0.0052356124 0.82038856 0.6471

-0.0617774 0.76256883 0.10535021 0.0 0.3137232 0.9132189 -0.37838274 -0.06253

0.18889774 0.90294445 0.24125765 0.0 0.81799114 1.0865396 -0.1309748 0.17793834

0.25334513 0.95019233 0.27814224 0.0 0.9537667 1.1444798 -0.071810216 0.2397161

0.21838559 0.55592346 0.19392742 0.0 0.6775683 0.6709899 0.042878807 0.2077163

0.4517898 -0.033422917 0.19505836 0.0 0.75146574 -0.031091988 0.55994695 0.4345

0.60244554 -0.06330189 0.25684044 0.0 0.99175954 -0.06392482 0.75412846 0.5795

1.0299273 1.0099105 -0.029033005 0.0 0.9757162 0.019038305 0.035608776 0.98004794

0.96788234 -0.010319378 0.030770123 0.0 1.0258299 0.9798115 -0.03772955 1.0212346

0.9165214 -0.026921304 1.0805727 0.0 1.0673982 -0.052518982 0.9011715 0.055653755

-0.19373542 0.9372319 0.1868434 0.0 0.15639876 0.87798584 -0.22921464 0.12886547

-0.029890355 0.9903935 0.028769515 0.0 1.0242295 0.98121595 -0.03527296 0.020075336

0.16586632 1.0537577 0.8398298 0.0 0.8660687 1.1044582 0.19631699 -0.11030859

0.035988174 0.01172187 -0.03462495 0.0 0.9710446 1.0226605 0.04260301 -0.023878671

-0.07636017 -0.024632007 0.07358454 0.0 1.0615499 -0.048087567 0.909685 0.050844945

0.05863098 0.019081593 -0.056740552 0.0 0.95253044 0.03693092 1.0695065 0.96087193

1.1630535 0.67789733 0.17131016 0.0 0.85744447 0.30088043 -0.025483057 1.0295205

0.7278324 0.46981966 -0.1757451 0.0 1.0910251 0.6314231 0.11810507 1.0620605

0.78863835 0.20257005 1.0048805 0.0 1.0692837 -0.20266426 0.9943222 0.106248446

-0.03825318 0.7772852 0.12343567 0.0 0.30284256 0.89999276 -0.3883498 -0.06326774

0.013223715 0.8118903 0.18630582 0.0 0.8972661 1.1681904 -0.027708884 0.11395822

0.21186034 1.0470067 0.76812166 0.0 0.960058 1.0562774 0.1336124 -0.2116417

-0.18525022 0.31930918 -0.048827052 0.0 0.8625925 0.8834896 0.23821498 0.1617572

-0.008397698 -0.23121 0.2242676 0.0 0.9548515 0.14579195 0.89278513 0.1167786

0.30647483 -0.27917668 -0.101294056 0.0 1.1318822 0.13038804 0.83252335 0.70210195

U4S4V4
T

K=4

=U7S7V7
T

3 components
ignored

What should be the value of k?

10/20/2005 1:58 PM 58Copyright © Kambhampati / Weld 2002-5

M = U S VT

Mapping of keywords into
LSI space is given by US

For k=2, the mapping is:
1.5944439 -0.2365708

1.6678618 -0.14623132

1.3821706 -1.0087909

0.7533309 1.05282

1.4372339 0.86141896

1.6259657 0.82628685

1.0972775 0.38029274

0.90136355 -0.7062905

1.1802715 -0.96544623

controllability

observability

realization

feedback

controller

observer

Transfer function

polynomial

matrices

LSx LSy

controllability

controller

LSIx

LSIy

Mapping of a doc d=[w1….wk] into
LSI space is given by dUS-1

The base-keywords of
The doc are first mapped
To LSI keywords and
Then differentially weighted
By S-1

ch3

Coordinate transformation inherent in LSI

10/20/2005 1:58 PM 59Copyright © Kambhampati / Weld 2002-5

t1= database
t2=SQL
t3=index
t4=regression
t5=likelihood
t6=linear

10/20/2005 1:58 PM 60Copyright © Kambhampati / Weld 2002-5

Should clean this up into a
slide summarizing the info
loss formula

Calculating Information Loss

11

10/20/2005 1:58 PM 61Copyright © Kambhampati / Weld 2002-5

SVD Computation complexity
• For an m*n matrix SVD computation is

– O(km2n+k’n3) complexity
• k=4 and k’=22 for best algorithms

– Approximate algorithms that exploit the sparsity of M are
available (and being developed)

10/20/2005 1:58 PM 62Copyright © Kambhampati / Weld 2002-5

What LSI can do
• LSI analysis effectively does

– Dimensionality reduction
– Noise reduction
– Exploitation of redundant data
– Correlation analysis and Query expansion (with related words)

• Any one of the individual effects can be achieved with
simpler techniques (see thesaurus construction). But LSI
does all of them together.

10/20/2005 1:58 PM 63Copyright © Kambhampati / Weld 2002-5

LSI is not the most sophisticated
dimensionality reduction technique

• Dimensionality reduction is a useful technique for any
classification/regression problem
– Text retrieval can be seen as a classification problem

• Many other dimensionality reduction techniques
– Neural nets, support vector machines etc.

• Compared to them, LSI is limited because it’s linear
– It cannot capture non-linear dependencies between original

dimensions
– E.g.

