
1

11-Jan-01 16:11 1

Search Engine Architecture

• Spider
– Crawls the web to find pages. Follows hyperlinks.

Never stops
• Indexer

– Produces data structures for fast searching of all
words in the pages

• Retriever
– Query interface
– Database lookup to find hits

• 300 million documents
• 300 GB RAM, terabytes of disk

– Ranking

11-Jan-01 16:11 2

Google Search Engine Architecture

SOURCE: BRIN & PAGE

URL Server- Provides URLs to be
fetched

Crawler is distributed
Store Server - compresses and

stores pages for indexing
Repository - holds pages for indexing

(full HTML of every page)
Indexer - parses documents, records

words, positions, font size, and
capitalization

Lexicon - list of unique words found
Barrels hold results of distribution sort
Anchors - keep information about links

found in web pages
URL Resolver - converts relative

URLs to absolute
Sorter - generates Doc Index
Doc Index - inverted index of all words

in all documents (except stop
words)

Links - stores info about links to each
page (used for Pagerank)

Pagerank - computes a rank for each
page retrieved

Searcher - answers queries

11-Jan-01 16:11 3

Crawlers (Spiders, Bots)

• Retrieve web pages for indexing by search engines
• Start with an initial page P0. Find URLs on P0 and add

them to a queue
• When done with P0, pass it to an indexing program, get

a page P1 from the queue and repeat
• Can be specialized (e.g. only look for email addresses)
• Issues

– Which page to look at next? (Special subjects, recency)
– Avoid overloading a site
– How deep within a site to go (drill-down)?
– How frequently to visit pages?

11-Jan-01 16:11 4

Spiders
• 243 active spiders registered 1/01

– http://info.webcrawler.com/mak/projects/robots/active/html/index.html
• Inktomi Slurp

– Standard search engine
• Digimark

– Downloads just images, looking for watermarks

• Adrelevance
– Looking for Ads.

11-Jan-01 16:11 5

Robot Exclusion

• You may not want certain pages indexed.
• Some crawlers conform to the Robot Exclusion

Protocol. Compliance is voluntary.
• They look for file robots.txt at highest directory

level in domain. If domain is
www.ecom.cmu.edu, robots.txt goes in
www.ecom.cmu.edu/robots.txt

• A specific document can be shielded from a
crawler by adding the line: <META
NAME="ROBOTS” CONTENT="NOINDEX">

11-Jan-01 16:11 6

Robots Exclusion Protocol

• Format of robots.txt
– Two fields. User-agent to specify a robot
– Disallow to tell the agent what to ignore

• To exclude all robots from a server:
User-agent: *
Disallow: /

• To exclude one robot from two directories:
User-agent: WebCrawler

Disallow: /news/
Disallow: /tmp/

• View the robots.txt specification at
http://info.webcrawler.com/mak/projects/robots/norobots.h
tml

2

11-Jan-01 16:11 7

Web Crawling Strategy
• Starting location(s)
• Traversal order

– Depth first
– Breadth first
– Or ???

• Cycles?
• Coverage?

b

c

d

e

f g

h

i j

11-Jan-01 16:11 8

Mercator Spider Structure

1. Remove URL from queue
2. Simulate network protocols & REP
3. Read in RewindInputStream (RIS) mode
4. Has this doc been seen before?
 (Uses checksums and fingerprints)

5. Extract links
6. Should we download new URL?
7. Has new URL been seen before?
8. Add URL to frontier

Document fingerprints

11-Jan-01 16:11 9

URL Frontier (priority queue)
• Most crawlers do breadth-first search from seeds.
• Politeness constraint: don’t hammer servers!

– Obvious implementation: “live host table”
– Will it fit in memory?
– Is this efficient?

• Mercator’s politeness:
– One FIFO subqueue per thread.
– Choose subqueue by hashing host’s name.
– Dequeue first URL whose host does NOT have an outstanding

request.

11-Jan-01 16:11 10

Fetch Pages Module
• Need to support ftp, gopher, http.
• Need to fetch multiple pages at once.
• Need to cache as much as possible (DNS, robot

exclusion rules).
• Need to be defensive!

– Need to time out http connections.
– Watch for “crawler traps” (e.g., infinite URL names.)
– See section 5 of Mercator paper.
– Use URL filter module

11-Jan-01 16:11 11

Duplicate Detection

• URL-seen test: has this URL been seen before?
(to save space, store a “hash”)

• Content-seen test: same doc, different URL.
– Supress link extraction from mirrored pages.

• What to save for each doc?
– 64 bit “document fingerprint”
– Minimize number of disk reads upon retrieval.

11-Jan-01 16:11 12

Synch vs. Asynch I/O

• Problem: due to network/host latency, want to
GET multiple URLs at once.

• Google: single-threaded crawler + asynchronous
I/O.

• Mercrator: multi-threaded crawler +
synchronous I/O. (easier to code?)

• Lucene:

3

11-Jan-01 16:11 13

Cache, Cache, Cache

• Read 600 URLs off URL frontier on disk.
• Cache robot exclusion rules.
• Cache document locally for re-processing.
• Cache DNS results

• Checkpointing: write snapshots to disk!

11-Jan-01 16:11 14

Crawling Strategies
• Priority queue instead of FIFO.

– How to determine priority?
– Google: PageRank.

• How many links point to this page?
• What is the “rank” of pages that point to this page?

– Location (e.g., does end w/ .edu? Does it have ‘home’ in it? Is the
page on a ‘good’ site?)

• Focused Crawling: find pages relevant to a particular
topic.
– Intuition: focused crawlers will be more efficient, provide faster

updates, and more relevant results.

11-Jan-01 16:11 15

Focused Crawling

• Classifier: is crawled page P relevant to topic?
– Algorithm that maps page to relevant/irrelevant.

• Distiller: is crawled page P likely to lead to
relevant pages?
– Algorithm that maps page to likely/unlikely.

• Distiller determines priority of following links off
of P!

11-Jan-01 16:11 16

Conclusions

• Writing a trivial spider is, well, trivial.
• Challenge is writing a spider that is efficient and

stable.
• Google has shown that pageranking works.
• Focused crawling is a “hot” direction.
• Project requires you to apply techniques learned

to mp3 crawling.

11-Jan-01 16:11 17

Mercator Statistics
HISTOGRAM OF DOCUMENT SIZES

PAGE TYPE PERCENT
text/html 69.2%
image/gif 17.9%
image/jpeg 8.1%
text/plain 1.5
pdf 0.9%
audio 0.4%
zip 0.4%
postscript 0.3%
other 1.4%

Exponentially increasing size

11-Jan-01 16:11 18

Crawling the MM Web

• Crawling the MM Web is tricky.
– Most Web pages do not contain links to

streaming media
– Efficient MM crawling heuristics differ

greatly from Web crawling heuristics
• Unique discovery rate > 200K /day

4

11-Jan-01 16:11 19

How big is the Multimedia Web?

• Currently singingfish.com has largest collection of
streaming media URLs: 6+Million URLs

• 75% of MM URLs can be identified by file extension
– Dropping as sites move to dynamic pages produced by MM

content management systems.

