
Tales of the Tail:
Hardware, OS, and Application-level Sources of Tail Latency

Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble
Department of Computer Science & Engineering, University of Washington

{lijl,naveenks,drkp,gribble}@cs.washington.edu

Abstract
Interactive services often have large-scale parallel implemen-
tations. To deliver fast responses, the median and tail laten-
cies of a service’s components must be low. In this paper,
we explore the hardware, OS, and application-level sources
of poor tail latency in high throughput servers executing on
multi-core machines.

We model these network services as a queuing system
in order to establish the best-achievable latency distribution.
Using fine-grained measurements of three different servers
(a null RPC service, Memcached, and Nginx) on Linux, we
then explore why these servers exhibit significantly worse
tail latencies than queuing models alone predict. The un-
derlying causes include interference from background pro-
cesses, request re-ordering caused by poor scheduling or con-
strained concurrency models, suboptimal interrupt routing,
CPU power saving mechanisms, and NUMA effects.

We systematically eliminate these factors and show that
Memcached can achieve a median latency of 11 µs and a
99.9th percentile latency of 32 µs at 80% utilization on a
four-core system. In comparison, a naı̈ve deployment of
Memcached at the same utilization on a single-core system
has a median latency of 100 µs and a 99.9th percentile latency
of 5 ms. Finally, we demonstrate that tradeoffs exist between
throughput, energy, and tail latency.

Categories and Subject Descriptors C.4 [Performance of
systems]

General Terms Design, Performance, Measurement

Keywords Tail latency, predictable latency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’14, 3-5 Nov. 2014, Seattle, Washington, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3252-1. . . $15.00.
http://dx.doi.org/10.1145/2670979.2670988

1. Introduction
Networked services’ response times vary substantially across
requests. Even for a seemingly simple service, a small frac-
tion of requests can exceed the median latency by orders
of magnitude. This tail latency presents a challenge for de-
signers, particularly in the case of large-scale, parallel, and
interactive applications.

Tail latency is problematic for several reasons. Interactive
services can struggle to provide complex functionality under
the strict latency budgets required to ensure responsiveness.
Under high degrees of parallelism, poor tail latency will
impact most user requests. For example, a Facebook web
request may access thousands of Memcached servers [15],
and a Bing search may access 10,000 index servers [12].
A user’s request does not complete until the slowest of
these sub-requests has finished. The challenge for developers
of individual services, then, is to build systems that have
predictably low latency: the one-in-one-thousand case is the
common case.

What causes some responses to take much longer than
normal? Sometimes the answer is application-specific, but
even applications specifically designed to have low median
latency can have a substantial latency tail. In this paper, we
show how hardware, operating system, and application-level
design and configuration choices introduce latency variability.
To do this, we study the behavior of three simple Linux
servers executing on a multi-core computer: a null-RPC
server, Memcached, and the Nginx web server.

We begin by using a classical queuing theory model to
establish a baseline for the ideal response latency distribution
for a particular service and request workload. Variable request
inter-arrival times inherently cause tail latency, as bursts
of requests that temporarily exceed the server’s capacity
introduce queuing delays. Queuing models predict that tail
latency worsens with increased server utilization, but that it
improves as additional processors service a queue.

Next, we measure the latency distributions achieved by
our three Linux servers. Somewhat surprisingly, these distri-
butions are substantially worse than predicted by a queuing
model. Using fine-grained measurements taken at various
levels of the system and stages of request processing, we

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2670979.2670988&domain=pdf&date_stamp=2014-11-03

systematically identify and quantify the major sources of
“excess” tail latency beyond that caused by workload bursts,
including:

• interference from other processes, including background
processes that run even on a system seemingly dedicated
to a single server;

• request re-ordering caused by scheduling policies that are
not designed with tail latency in mind;

• application-level design choices involving how transport
connections are bound to processes or threads;

• multi-core issues such as how NIC interrupts and server
processes are mapped to cores;

• and, CPU power saving mechanisms.

Guided by our measurements, we evaluate techniques for
eliminating the excess tail latency exhibited by our servers.
Many of these techniques are known in the folklore of
systems engineering for their ability to improve scalability
and throughput, or reduce latency [20]. Our contribution is to
quantitatively evaluate their effects with respect to the “ideal”
distribution implied by the queueing model.

These techniques are ultimately effective at explaining and
mitigating tail latency. For example, with a default configura-
tion of a four-core computer with a 10 Gb/s NIC, Memcached
operating at 80% utilization has a median latency of 33 µs
and a 99.9th percentile latency of 14 ms. With our techniques,
we were able to improve this to a median latency of 11 µs
and a 99.9th percentile latency of 32 µs, an improvement of
two orders of magnitude at the tail that closely matches the
queuing model’s “ideal” distribution. Lastly, we observe that
a tradeoff often exists between throughput and tail latency.

2. Queuing Models and Predicted Latency
What is the best possible tail latency achievable by a net-
worked server? If we can understand the answer to this ques-
tion, we can use it as an “ideal” baseline distribution to gauge
how well a particular server implementation and configu-
ration performs. To our knowledge, no previous work has
attempted to characterize the ideal latency distribution of a
network service.

One might expect this to be a trivial question: shouldn’t
the ideal latency distribution be a uniform one, where every
request has the same response time? We demonstrate that
this is unattainable for realistic workloads: there is a latency
tail that is inherent to the workload. This tail is caused
by the queuing delays that are introduced when a burst of
requests temporarily exceeds the system’s underlying request
processing capacity.

To capture this effect, we model the service as a queuing
system. Our model allows us to make several observations
about the latency characteristics of real servers and workloads.
First, even if we could build a server that processes requests
in a fixed, deterministic time, there will still be a latency tail

for workloads that have variable request inter-arrival times.
Second, the ideal latency distribution depends on the average
utilization at which the server is driven. Systems that are run
at high utilization have larger latency tails.

Third, adding additional processors to a system can reduce
tail latency, even when the workload throughput is scaled
up to maintain the same overall server utilization. Fourth,
the choice of queuing discipline affects tail latency. FIFO
scheduling provides the lowest tail latency, whereas other
policies can achieve lower median latency at the cost of worse
tail behavior.

Model. We model a server as a single-queue system, in
which clients’ requests are independent and arrive according
to an arrival distribution. One or more workers (processors,
threads, or processes) at the server retrieve and process re-
quests from the queue according to a predetermined queuing
discipline, such as FIFO. In Kendall’s notation, this would
be termed an A/S/c queue, where A describes the arrival
distribution, S is the service time distribution, and c is the
number of independent workers. The average arrival rate (A)
must be lower than the average service rate (S), otherwise
queuing delays become infinite. We generally model a net-
work service as having a fixed service time, derived from our
measurements. For the applications we study, this uniform
processing time distribution is appropriate: the fundamental
amount of computation involved in processing a request is
fixed.

2.1 Arrival distributions

Figure 1 shows the response latency of a single-worker FIFO
server with a uniform request processing time of 50 µs when
operated at an average utilization of 70%. The graph is a
complementary cumulative distribution function, and so the
point (x,y) on the graph implies that y is the fraction of
requests that experience a latency of at least x µs. This style
of graph helps when visualizing latency tails, as Y-axis labels
correspond to the 0th, 90th, 99th, 99.9th (and so on) percentile
latency.

Each line on the figure corresponds to a different request
inter-arrival time distribution. We have plotted several analyt-
ically defined arrival processes and the measured inter-arrival
distribution of requests to Wikipedia [22], each scaled up to
have an average request throughput corresponding to 70%
server utilization.

Despite each request taking a deterministic amount of
time, the latency tail (i.e., 99th percentile or 99.9th percentile)
is high, because of random arrival bursts. For example, if
two requests arrive within 50 µs of each other, the second
request must be delayed until the first completes and the
server becomes available. For each distribution, there is some
probability of requests coming together in bursts sufficiently
tight as to cause delay. The exception is a uniform arrival
distribution, i.e. one where each new request arrives exactly

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
C

D
F

P
[X

 >
=

 x
]

Latency in micro-seconds

Pareto
Poisson

Uniform
Lognormal

Wiki Trace 2008

Figure 1. The latency tails exhibited by single-worker,
uniform-service-time server, for different request arrival dis-
tributions.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
C

D
F

P
[X

 >
=

 x
]

Latency in micro-seconds

50% util
70% util
90% util
95% util

Figure 2. The effect of increased utilization on tail latency,
for a Poisson request inter-arrival time distribution.

70 µs after the last, which is decidedly unrealistic for network
services.

2.2 Utilization

Next, we show how ideal latency distributions vary as we
increase the server utilization. Increasing utilization reduces
the leeway to handle bursts, which means that commonly
occurring small bursts will build up large queues with long
delays. Figure 2 shows this effect for a Poisson arrival process.
Keeping the number of workers at 1, we increased the average
request arrival rate, raising the server’s utilization from 50%
to 95%. The 99th percentile increases by 10x as we go from
50% utilization to 95%. This suggests a simple (if expensive)
way to improve tail latency: running servers at low utilization.

2.3 Parallel servers feeding from one queue

Latency distributions also depend on degree of parallelism at
the server. The ideal distribution improves as we change the
number of workers (CPUs) at the server, even as we scale up
the average request throughput to keep the server utilization
constant. Figure 3 shows the effect of adding more workers
for Poisson arrivals. Starting with 1 worker and a Poisson
arrival process, we doubled the number of workers at each

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
C

D
F

P
[X

 >
=

 x
]

Latency in micro-seconds

1 CPU
2 CPU
4 CPU
8 CPU

Figure 3. Tail latency improves as we increase the number
of workers in a server, while scaling up the request arrival
rate to maintain 70% utilization.

step and also doubled the arrival rate, keeping utilization fixed
at 70%.

Increasing the number of workers leads to better tail
latency. With n workers, up to n requests can arrive within the
same 50 microsecond interval before any requests are queued.
For example, the 99th percentile drops by 4x when running 8
workers instead of 1. However, an important caveat is that this
improvement depends on all parallel workers pulling requests
from a shared queue. If, instead, each worker has a separate
queue, the resulting latency distribution would be the same as
the single-worker case, as we are just instantiating multiple
independent copies of a single-worker system. Throughput
would improve, but the latency distribution would not.

2.4 Queuing discipline

The order in which requests are pulled from the queue
has a significant impact on both median and tail latency.
Figure 4 shows the latency distribution for 4 different queuing
disciplines, for a server with 4 workers at 80% utilization and
50 µs of processing delay.

• FIFO: Requests are put in a single global FIFO queue at
the server and workers pull requests from it. The earliest
request is always processed next.

• LIFO: The opposite of FIFO; the most recently arriving
request is processed next.

• Random worker: When requests arrive, they are assigned
to a random worker. Each worker has its own FIFO queue.

• Random request: All requests arriving at the server are
put in a single queue, and workers pull requests from the
queue in random order. Each queued request is equally
likely to be processed next, regardless of its arrival time.

FIFO queuing has the best tail latency; indeed, it is
known to be optimal with respect to worst-case (i.e., tail)
latency, as can be seen using a simple exchange argument.
In comparison, LIFO has worse tail latency than FIFO, but
better median latency (50 vs. 64 µs in our example). Both
random disciplines have worse tail latency than FIFO, though

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
C

D
F

P
[X

 >
=

 x
]

Latency in micro-seconds

Random Worker
Random Request

FIFO
LIFO

Figure 4. Latency distributions as we change the queuing
discipline.

“random request” has better median latency as well, since
some requests are able to jump the queue.

3. Measurement Method
In the previous section, we summarized known important
results about the “ideal” latency distributions of simple
queuing systems for different workloads. In the rest of this
paper, we measure the latency tails of real servers and attempt
to explain what factors lead them to diverge from the best
case predicted by queuing models. Our overall approach is to
identify a discrepancy, to analyze the system to explain and
mitigate it, and to iterate through this process until we bring
the measured latency distribution close to the ideal predicted
distribution.

3.1 Applications

We examine three applications in our study; a null RPC server,
Memcached, and Nginx. Each of these servers is designed to
provide low latency response and high throughput. However,
they have different concurrency models (e.g., threads vs.
events) and they use different transport protocols (TCP vs.
UDP). As we will see, these choices do impact the servers’
measured latency tails.

3.1.1 Null RPC server

We begin with our simplest application: a null RPC server that
we implemented in C. The server accepts TCP connections,
reads 128 byte requests over each TCP connection, and
echoes 128 byte responses back to the clients. We chose a
classic multi-threaded architecture that somewhat resembles
Apache: the server has a main accept thread that spawns new
worker threads to handle each arriving client connection. The
worker threads enter a blocking loop, reading requests using
read and immediately writing a response back using write.
Worker threads do not access any shared data structures or
locks, and they do not use any other system calls.

For this server, request queuing and scheduling are man-
aged by the OS. When a request arrives on an established
TCP connection, the OS places the corresponding worker
thread on a ready queue, eventually scheduling it on an avail-

able core. The order in which requests are processed therefore
depends on how TCP data flows through the OS and the OS’s
thread scheduling policy.

3.1.2 Memcached

Memcached is a fast, flexible and lightweight key-value store,
primarily used for accelerating dynamic web applications.
Memcached is used in environments where low tail latency is
important. For example, Facebook’s applications may execute
thousands of Memcached queries for each user request [15].
Accordingly, Memcached is specifically engineered to have
predictable latency, storing all data in an in-memory hash
table and using custom memory management with O(1)
operations.

Memcached supports both TCP and UDP connections.
Memcached servers are often configured to have a number
of threads proportional to number of cores in the system, to
exploit parallelism. In UDP mode, worker threads simultane-
ously wait for messages on the UDP socket, retrieving mes-
sages from the kernel’s receive queue in FIFO order. When
running in TCP mode, all incoming TCP connections are
statically partitioned among the Memcached worker threads.
Processing a request generally requires a lookup into the hash
table, acquiring one or more locks, and updating linked list
pointers. As we show in our measurements, this application
level processing takes only 1-2 µs with very little variance.

In our experiments, we use Memcached version 1.4.15
and store 64-byte keys with 1024-byte values. We generate a
workload consisting of 90% reads and 10% writes.

3.1.3 Nginx

The Nginx web server is designed for high throughput and
to scale to many cores. Unlike Apache, which uses threads
or processes and blocking system calls to process requests,
Nginx has an event-driven architecture, dividing HTTP pro-
cessing into various stages and using non-blocking system
calls to perform asynchronous disk and network I/O. To take
advantage of multicore and multiprocessor systems, Nginx
runs multiple worker threads (typically one per core), and
statically assigns each client to a specific worker thread at
connection establishment.

In our experiments, clients direct all HTTP requests to
the same static file. Because of this, all file reads hit in the
file system buffer cache, avoiding any latency variability
introduced by storage device I/O. Tail latency effects due to
disk I/O are beyond the scope of this paper. Clients issue
85-byte HTTP requests, and the server generates 849-byte
responses (including HTTP headers and payload). These
experiments use Nginx version 1.4.4.

Nginx worker threads check for completed I/O events
using the epoll system call. The Nginx worker then iterates
over the associated connections and performs the necessary
HTTP processing. Importantly, epoll returns a list of file
descriptors in the order they became ready, unlike previous

interfaces that returned an unordered list. This allows each
Nginx worker to process HTTP requests in FIFO order.

3.2 Deriving the ideal distribution

Given an application, a workload, and a system configuration,
how do we determine the ideal latency distribution? We
accomplish this by determining a reasonable estimate for
the amortized time the application takes to process a single
request, by measuring the actual request arrival time series
experienced by a server while engaged in an open-loop
workload with clients, and then by feeding this time-series
and estimated static request processing time into a queuing
model.

For the CPU-bound workloads we study, we can estimate
the amortized request processing time by running the server
on a single core at 100% utilization and measuring the
throughput achieved. Inverting the throughput number gives
an estimate of the amortized latency of processing a single
request. For example, in case of Memcached, we measured
peak throughput at 125,000 requests per second per core.
Hence, our amortized processing time is 8 µs per request.

In practice, request processing times will vary. For exam-
ple, batching effects can reduce the processing time of some
requests, cache misses can increase the processing time of
some requests, and contention for shared locks can introduce
delays under load. However, for the specific servers that we
are studying, the request processing logic is simple enough
that we have found per-request processing variability to be
negligible relative to burst-induced queuing delays.

Once we obtain this amortized request processing time (t),
we simulate an M/D/c queue as described in Section 2. In our
simulation, we assume every request takes a deterministic
time of t µs. The input request distribution for the simulator
is the sequence of request arrival times measured during our
experiment. This allows us to compare a measured latency
distribution of an actual server to the latency distribution of
an ideal server.

3.3 Testbed

We measure the performance of our three applications on a
testbed consisting of Dell PowerEdge R610 servers, each with
two Intel Xeon L5640 6 core (12 threads, 2.27 GHz) proces-
sors, running Ubuntu Linux 12.04 with kernel version 3.2.0.
Each machine has 24GB of DRAM (1333 MHz) divided into
two 12GB NUMA nodes. All servers are connected to a sin-
gle Arista 7150S 24 port 10 Gbps switch using Mellanox
ConnectX-3 adapters.

We use one of the servers to run the application under test,
and five machines to run clients to generate the workload.
The clients generate requests as an open-loop Poisson pro-
cess [17]; open-loop workloads better represent large scale
Internet-driven arrival processes, and they are known to in-
duce higher degrees of burstiness and therefore can more
significantly affect tail latency. We adjust the request rate
to maintain a target CPU utilization on the server. Except

as otherwise noted, for TCP-based workloads, we open all
connections at the start of the experiment, outside the mea-
surement interval, so that connection setup overheads do not
affect our results.

3.3.1 Timestamping

To precisely understand and pinpoint the sources of latency
variation, we need a fine-grained timestamping method to
measure how much time a request spends in different parts
of the server OS and application. We start timestamping
when a request packet first arrives on the host from the
server’s NIC, and we end timestamping immediately before
the OS transfers the response packet back to the NIC. We use
the system clock with microsecond precision as the global
reference of time for timestamping, and we disable NTP to
avoid measurement errors arising from time updates.

To timestamp requests, we append an empty 30-byte
buffer to the original request packet. As the request makes
its way through various stages of server processing, we write
the system clock time into the buffer. To implement this,
we modified the Linux kernel source, network drivers, and
application protocols to write timestamps into the appended
buffer at the right offset. This method is attractive because it
allows us to collect multiple timestamps with low overhead,
and it avoids the need for the server to log requests: the
response packet itself contains all the timestamps, so the
clients can maintain the log.

For this study, we timestamp at each of the following
events:

T1: In the network driver, when the NIC has notified the
system that a packet is available.

T2: After TCP/UDP processing, but before the application is
scheduled.

T3: After the application thread has been scheduled onto a
core.

T4: After the application’s read system call returns, i.e., after
the request data has been copied to user space.

T5: When the application makes a write system call to send
the response.

T6: In the network driver, when the response packet is sent to
the NIC.

We report T6−T1 as the latency of a given request. The
intermediate timestamps are diagnostic, used to identify the
source of tail latency. T1-T2 is the network stack processing
delay. T2-T3 is the queuing and wakeup delay. T3-T4 is
the packet copy and return to user-level delay. T4-T5 is the
user space application processing time. T5-T6 is the packet
transmit delay.

This paper focuses on tail latency in network servers. Our
experiments measure only the NIC-to-NIC processing delay
on the server, and exclude any latency caused by the network
fabric or client. The network can also be an important source
of tail latency in datacenters, as has been studied extensively

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
C

D
F

P
[X

 >
=

 x
]

Latency in micro-seconds

(a) Null RPC server

Ideal Server Standard linux Niceness -20 Realtime Priority Dedicated Core

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Latency in micro-seconds

(b) Memcached

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Latency in micro-seconds

(c) Nginx

Figure 5. The effect of background processes on tail latency. For this experiment, we disabled all but a single core on a single
CPU, and we loaded the server at 80% utilization.

by previous work [1, 23, 28], but this is outside the scope of
our study.

Our measurements begin once the network driver is noti-
fied that a packet is available. It is possible that the NIC itself
is a source of tail latency, so a more accurate measurement
would use a timestamp taken in the hardware itself. We were
not able to use such a measurement for most of our experi-
ments, but Appendix A demonstrates that these effects are
negligible.

4. Sources of Tail Latency
We now turn our attention to the measured latency behavior
of our three servers and the factors that affect it. We first use
the method previously described in Section 3.2 to derive the
“ideal” latency distribution of each server. Next, we measure
their actual latency distributions in a default configuration on
Linux, showing that each performs significantly worse than
its ideal.

We study these applications in increasingly complex con-
figurations, beginning with a single-core system and later
moving toward multi-core and multi-processor configura-
tions. In the process, we identify the causes of deviation from
the ideal latency distribution. By ameliorating each cause, we
show that our server can achieve a latency tail that is close to
ideal.

4.1 Background Processes

We start with the simplest configuration: a single CPU,
single core system running a single server at a time. For
this configuration, we disable all but one CPU core on our
server machine, and we also disable HyperThreading. For
each server application, we adjust the clients’ workload to
achieve a target server utilization of 80%.

In Figure 5, we plot the servers’ ideal latency distributions
and their actual measured latency distributions. Although the
ideal and measured median latencies are similar (e.g., 29
µs for the measured null RPC server versus 21 µs for the
ideal distribution), the measured 99th percentile latencies are
10–1000× the ideal latencies.

With only a single core available on the machine, the
server application has to contend with other running back-
ground processes for the core. Although our test machine
is not running any other servers or compute-intensive tasks,
it still runs a standard complement of Linux daemons (e.g.,
sshd, NetworkManager) and cluster management software
(e.g., Ganglia).

By default, all user level processes have the same priority.
As a result, when the kernel schedules a background process,
our application has to wait for the core to become available.
The scheduler used by our Linux kernel assigns processes
time-slices on the order of milliseconds, which explains why
some requests in Figure 5 take more than a millisecond. There
is a tail amplification effect that increases impact of these
long delays: if the core is blocked by a background task for a
long period of time, this greatly increases the latency of not
just a single request but all requests that arrive in that interval.

The natural approach to mitigating this problem is to as-
sign the server application a higher priority than the back-
ground tasks. However, Linux’s normal priority mechanism
(niceness) is not powerful enough to be effective for reducing
tail latency. Figure 5 shows the effect of increasing the prior-
ity to its maximum normal value (niceness −20). This causes
the server process to be scheduled for longer time-slices than
other processes on the system, providing a slight improve-
ment in tail latency, but still remaining far away from the
ideal latency. The difference remains because the server can-
not preempt other processes. It must wait for them to finish
their time-slice, which is still much larger than an individual
request’s processing time.

Linux’s realtime scheduler allows us to raise the priority of
our server application strictly higher than all other processes.
Making the server process a realtime process allows it to
preempt any normal-priority process. This improves the
tail latency dramatically, nearly eliminating the effects of
background processes. For comparison, Figure 5 also shows
a “Dedicated Core” line, where we move all other processes
to a second CPU core, leaving the first entirely dedicated
to the server application. The slight difference between
the dedicated-core and realtime-priority configurations can

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

C
C

D
F

P

[X
 >

=
 x

]

Latency in micro-seconds

Realtime (FIFO)
CFS (non-FIFO)

Ideal Server

Figure 6. Linux CFS scheduler (non-FIFO) running at
strictly higher priority versus realtime (FIFO) scheduler for
our Null RPC server.

be attributed to increased context switching overhead and
occasional cases where another running process is in a non-
preemptable section of kernel code.

The realtime scheduler has a second effect. In addition to
running processes at strictly higher priority, it also schedules
threads of the same priority in FIFO order, which is not the
case for normal-priority processes. We break down the impact
of this change in the following section.

4.2 Non-FIFO Scheduling

As we established via theoretical analysis in Section 2, a
FIFO scheduling discipline has better tail latency (but poten-
tially higher median latency) than other policies. The default
Linux scheduler, CFS (Completely Fair Scheduler [3]) favors
fairness over order, resulting in a non-FIFO scheduling policy.
This has a measurable effect on some of our experiments.

The null RPC server is the only one of our applications
impacted by FIFO vs non-FIFO scheduling, because it is the
only multithreaded application. The null RPC server relies
on the kernel’s scheduler to determine which thread to run
next, and therefore which request to process first. The CFS
scheduler chooses which thread to run based on how much
CPU time each thread has received in the past, rather than
which one became runnable earliest, so requests will not be
processed in the order that they are received. This scheduling
policy does not affect the two other applications, because
they use event-driven architectures with only a single thread
per core.

As a result, switching to the realtime scheduler has two
effects on the null RPC server. It reduces interference from
background processes, leading to lower tail latency, and it
processes requests in FIFO order, which further reduces tail
latency but also increases median latency. We separate these
two effects by installing a custom scheduler into the Linux
kernel, which chooses which of the null RPC server’s threads
to run using exactly the same policy as CFS, but gives them
strictly higher priority over any other process on the system.
We compare this non-FIFO scheduler to Linux’s realtime
scheduler, which has both strictly higher priority and FIFO

ordering, in Figure 6. The results are consistent with our
theoretical analysis (Figure 4).

4.3 Multicore

Next, we move from a single-core configuration to a multi-
core one. Our theoretical model predicts that increasing
concurrency in this way will inherently reduce tail latency
(Section 2.3). Does this effect occur in practice? To test this,
we run our applications on four cores. For this experiment,
we activated four cores on the same physical CPU to avoid
(for the moment) NUMA and cache coherence effects. When
scaling up the server to four cores, we also scale up the
workload by a factor of 4 to maintain the same overall server
utilization.

Figure 7(a-c) shows the ideal latency distribution for
both the single core and multi-core setup, as well as the
actual measurements. For null RPC server, moving to a
multi-core server improves tail latency, as predicted by the
theoretical model. The latency is better than even the ideal for
a single-CPU server, although a gap still remains between the
measured performance and the multi-CPU ideal. The results
for Memcached and Nginx, however, remain essentially
unchanged from the single-core case.

Recall the caveat from Section 2.3: in order for increasing
the number of processors to benefit tail latency, the system
must follow a single-queue model where any processor can
process any request. This is the case for the null RPC server,
but not Memcached and Nginx. The null RPC server resem-
bles a single-queue system because CPUs pull threads from
the pool of all runnable threads. However, both Memcached
and Nginx statically assign incoming TCP connections to spe-
cific workers. Our experiments send multiple requests over
a persistent HTTP connection to avoid the connection setup
cost, so every request can only be handled by the worker
thread responsible for its connection. Memcached and Nginx
thus resemble a multi-queue system where each worker has
its own request queue. Section 2.4 predicts that such a system
will have the same latency distribution as a single-CPU setup,
and our experiments bear this out.

One simple way for converting Memcached into a single-
queue system is by switching the transport layer from TCP
to UDP. As a result, all worker threads pull messages from a
single UDP socket and this naturally follows the single-queue
model as seen in Figure 7(d).

However this technique cannot be applied to Nginx, as it
uses HTTP over TCP. The underlying issue here is that all
TCP connections are created at the start of the experiment
and closed at the end, so each individual request can be
handled only by a specific worker process. Also, this is
not a realistic workload for a websever facing the outside
world. Hence, we tested Nginx with a slightly more complex
workload in which open-loop clients with poisson arrivals
create a TCP connection, send 20-40 GET requests and
then close the connection. This way, each client-arrival can
be assigned to any Nginx worker process and the system

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

C
C

D
F

P
[X

 >
=

 x
]

Latency in micro-seconds

(a) Null RPC server

1 CPU Ideal 4 CPU Ideal 1 CPU Measured 4 CPU Measured

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

Latency in micro-seconds

(b) Memcached TCP

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

Latency in micro-seconds

(c) Nginx - long TCP connections

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

Latency in micro-seconds

(d) Memcached UDP

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

Latency in micro-seconds

(e) Nginx - short TCP connections

Figure 7. Tail latency improvement as we scale to multiple cores. 4 cores at 80% utilization.

behaves approximately as a single-queue server. With this
new workload, we do see improvement in latency as we move
from single core to multiple cores.

4.4 Interrupt Processing

Even after negating the effects of background processes and
non-FIFO scheduling, we still notice a gap of 2-3× between
the ideal and measured 99th percentile latency for each appli-
cation. Even though the server applications have strict priority
over (and can preempt) background processes, requests are
still delayed. Our analysis identified kernel interrupt process-
ing as the cause. When packets arrive at the NIC, it interrupts
a host CPU to initiate packet processing, triggering the ker-
nel to receive the packet and process it through the TCP or
UDP stack. By default, the “irqbalance” daemon is enabled
by Linux. At a lower load, “irqbalance” operates in power-
save mode and assigns interrupts to one centralized CPU
core. However, as the load goes up, “irqbalance” switches to
performance mode and spreads interrupts to all CPUs to keep
them at similar utilization. Hence, our application threads
were interrupted frequently by incoming packets on all cores.

This behavior causes the system to deviate from the ideal
model in two ways. First, each request no longer takes a
fixed amount of time to process: the interrupt introduces both
context-switching overhead and cache pollution [19]. Second,
processing is no longer done in a FIFO manner. Some part of a
later request (network stack processing) takes place before the
application-level processing of an earlier request is finished.

In order to fix these issues, we configured the system to
dedicate a single core for interrupt processing and used the

remaining three cores to run application threads. This ensures
that the application threads are not preempted by interrupts,
and we maintain FIFO-ness in the whole system. Figure 8
shows the improvement we obtain by making this change.
We are now very close to the ideal latency distribution and
off by only a few microseconds. (Note that the ideal server
line for Nginx in Figure 8(c) reflects the optimal latency for
the multi-queue configuration, as discussed in Section 4.3.)

Employing this approach means that we must carefully
balance the number of cores dedicated to interrupt processing
and to the application. Otherwise, we might end up wasting
resources because we do not end up fully saturating the
dedicated interrupt core, and hence achieve lower throughput.
For Memcached and our null RPC server, this ratio was
roughly 1:3. A single core can process around 350,000 packet
interrupts per second and each application thread can process
120,000 requests per second. For applications that perform
more application-level processing, a higher ratio may be
necessary. For large multicore systems, multiple cores may
need to be dedicated to processing interrupts.

Looking to the future, we suspect that many server systems
on large multicore systems will benefit from spatial allocation
of cores to processes and threads, rather than the temporal
multiplexing of multiple applications on each core. Over long
time scales (minutes), the number of cores allocated to each
application can change. Over short time scales (microseconds
to seconds), this allocation would remain fixed, helping to
prevent latency tail effects caused by interference and context
switching between applications.

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

C
C

D
F

P
[X

 >
=

 x
]

Latency in micro-seconds

(a) Null RPC server

Ideal Server Interrupt Spread Interrupt Dedicated Core

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

Latency in micro-seconds

(b) Memcached

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

Latency in micro-seconds

(c) Nginx

Figure 8. Impact of directing interrupts to a specific core versus spreading across all cores. In the first case, interrupts are spread
across all cores, whereas in the second case interrupts go to a dedicated core and application threads run on remaining cores.

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

C
C

D
F

P

[X
 >

=
 x

]

Latency in micro-seconds

Ideal Server
NUMA Aware

NUMA Unaware

Figure 9. Impact of NUMA aware memory allocation in
Memcached running on 8 cores (across NUMA nodes) at
80% utilization.

4.5 NUMA Effects

As we scale our system beyond multiple cores on a single
CPU to multiple CPUs, new issues related to non-uniform
memory access latency (NUMA) arise. We investigate these
issues by running Memcached with 8 threads spread across
the two processors in our system, with dedicated interrupt
cores on each processor. Our theoretical model anticipates
that this will improve tail latency because the number of
workers has doubled. Figure 9 shows that the opposite is true:
the tail latency is in fact worse than running on a single core.

Our investigation revealed that the cause of this increase
is increased memory access latency. This problem is caused
in part by Linux’s default NUMA memory allocation policy.
By default, Linux allocates memory from a single NUMA
node to a process, until no more memory is available on that
node. As a result, half of the Memcached threads must make
cross-NUMA-node memory accesses, which have higher
latency. We do not observe the same issue in our null RPC
server or Nginx, because they are less memory intensive than
Memcached.

As an alternative, we run two instances of Memcached,
one on each processor. We force each instance to allocate
only memory from the same NUMA node using numactl.
Figure 9 shows the improvement we achieve.

4.6 Power Saving Optimizations

All of our previous experiments have considered high-
utilization systems (80% CPU utilization). At lower uti-
lization levels, hardware power saving optimizations come
into play. Our server, like nearly all machines today, incorpo-
rates several CPU power saving optimizations, such as idle
power states and frequency scaling. These optimizations save
precious energy resources, but they inflate the tail latency
at low utilizations. Indeed, they cause a counter-intuitive
effect: while our theoretical model would predict lower tail
latency for low-utilization systems, power saving mecha-
nisms can cause these systems to have higher tail latency. We
see this effect when running our servers at 10% utilization
(Figure 10).

When CPUs become idle, they can be placed in an energy-
saving state referred to as “C-state”. There are multiple C-
states, each causing more components of the CPU subsystems
to be shut down. For example, on our Intel CPU, the C1
state stops the main internal clock, while the C3 state stops
all internal and external clocks. Linux chooses which C-
state to use based on CPU utilization and other factors.
However, a higher C-state requires a longer wake up time,
and the actual wake up time varies for different systems.
Requests that are executed on a processor in power-saving
mode will experience a higher latency than usual because
they are delayed while the CPU is reactivated. Our testing
machine has a wake up time of 200 microseconds for state
C3 (the highest C-state in our machine), and we observe
some requests delayed by this amount for all applications in
Figure 10. By disabling power-saving states, forcing the CPU
to stay in state C0 (running), we eliminate the highest-latency
part of the tail, at the cost of increasing the CPU’s power
draw.

A second power conserving feature is dynamic frequency
scaling, where the operating system dynamically changes the
processor clock frequency. Frequency scaling has previously
been identified as a source of tail latency [25]. When the
CPU is mostly idle, the operating system reduces the clock
frequency to save power. If a CPU-bound request executes

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

C
C

D
F

P
[X

 >
=

 x
]

Latency in micro-seconds

(a) Null RPC server

Ideal Server Idle State + Scaling OFF Idle State OFF Standard Linux

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

Latency in micro-seconds

(b) Memcached

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

Latency in micro-seconds

(c) Nginx

Figure 10. Impact of power saving optimizations on tail latency at low (10%) utilization.

while the CPU frequency is reduced, it can take longer time
than usual. Figure 10 shows that this does not noticeably
affect our null RPC server and Memcached, which require
little computation for each request. However, Nginx, which
is more CPU-intensive, shows a slight improvement when
the CPU is forced to always run at maximum frequency.

4.7 Summary

We identified several ways in which hardware, operating
system policies, and application-level design choices can
impact measured tail latency. To summarize our observations
and recommendations for mitigation:

• Interference from background processes has a large effect
on tail latency. Linux’s normal priority mechanism (nice-
ness) isn’t sufficient to prevent this, but realtime priority
is effective.

• For multithreaded applications, a thread scheduler that
maintains FIFO ordering reduces tail latency.

• The increased concurrency of a multicore system can
help tail latency, but common concurrency architectures
can negate this effect by requiring certain requests to be
processed by specific workers.

• Dedicating certain cores to processing interrupts and
others to application processes is beneficial.

• Poor placement of threads and memory on NUMA sys-
tems can lead to tail latency problems.

• At low utilization levels, there is a tradeoff between power
saving and tail latency.

Table 1 summarizes the various sources of tail latency we
observed and how they affect the latency distribution. We
suggest possible mitigations and list the tradeoffs involved.

Our techniques for mitigation are effective. We are able
to reduce the 99.9th percentile latency for each of the three
applications we studied to within a few percent of optimal.
In contrast, an untuned Linux system has 99.9th percentile
latency that exceeds the optimal value by two to three orders
of magnitude.

5. Related Work

Data center services are now routinely evaluated in terms
of their 99th or 99.9th percentile latency. Dean and Barroso
described their efforts to tame tail latency in Google’s interac-
tive applications; their goal is to allow parallel systems to tol-
erate latency variability in individual components, to “create a
predictably responsive whole out of less-predictable parts [5].”
The techniques they used include re-issuing slow requests to a
different host [6, 30], issuing redundant requests across repli-
cas to improve latency at the cost of lowered throughput [21],
replicating data using quorum protocols that do not require
every replica to answer [14], or accepting slightly incomplete
results in information retrieval systems. More recent work
takes an end-to-end view of all stages of a workload to choose
which of these techniques to apply to the different stages of a
request [12]. Related techniques have been used to avoid the
“straggler” problem in data-parallel computation frameworks
like MapReduce and Spark [2, 6, 9, 30, 31].

This body of work is complementary to our work on un-
derstanding and eliminating the sources of tail latency on an
individual servers. Their approaches focus on higher-level
techniques such as request replication in a distributed system
or using pre-calculated statistics about job dependencies to
dynamically adjust resource allocations, whereas we stud-
ied and ameliorated hardware, OS, and concurrency-model
induced causes of tail latency on a single server node. Our ef-
forts to improving the tail behavior of lower-level components
can benefit higher-level complex distributed systems, but the
techniques explored in others’ work may still be necessary.

Chronos [13] also analyzed the sources of tail latency,
concluding that the majority of tail latency was caused by
kernel sources. They proposed avoiding this overhead with
kernel-bypass network APIs and packet classification on the
NIC. Our study takes a deeper look at the sources of tail
latency within the kernel, and in contrast to their approach,
we were able to achieve low median latency and good tail
behavior using conventional network stacks.

In multi-tenant cluster environments, VMs for different
tasks can compete for shared resources, causing severe la-
tency variation. Bobtail [29] is a scheduler that places latency-

Source Cause of deviation from ideal Potential way to fix Trade-offs involved

Background
Processes

Scheduling delay caused by interference
from background processes.

Raise priority to realtime or assign
to a dedicated core.

Realtime priority may starve other
tasks. Dedicated core may lower sys-
tem utilization due to idleness when
no requests are pending.

Non-FIFO
Scheduling

Threads are scheduled out of order by
Linux scheduler

Use a FIFO scheduler such as the
realtime scheduler

Changing scheduler also affects pri-
orities, etc.

Concurrency
Architecture

Static partitioning of TCP connections
effectively creates a queue per worker,
violating the single-queue property.

Allow all threads to process
all requests: use a UDP event-
driven architecture or a thread-per-
connection TCP architecture.

UDP loses reliability and congestion
control properties of TCP; thread-per-
connection architecture may reduce
throughput.

Interrupt
Processing

Increased processing time due to context
switching and loss of FIFO ordering.

Dedicated core for interrupt pro-
cessing.

Potentially lower throughput if inter-
rupt core runs at low utilization.

NUMA Effects
Increased processing time due to memory
accesses across NUMA nodes and cache
coherency protocol.

Run an instance of Memcached
per NUMA node with partitioned
keyset.

Creates multiple queues, thus forfeit-
ing some tail latency benefit. May
cause load-balancing issues among
instances.

Power Saving
Increased processing time required to
wake up a CPU from idle state.

Turn off idle states and CPU fre-
quency scaling.

Higher energy usage

Table 1. Summary of sources of tail latencies along with ways to mitigate them and the trade-offs involved.

sensitive and compute-intensive VMs on different hosts, and
DeepDive [16] uses a more sophisticated approach to detect
interference. Our work has some similarity, in that we have
found it beneficial to pin the threads or processes of servers
on separate cores in order to isolate them from interference
caused by background processes.

The datacenter network can also be a source of tail la-
tency because of long queuing delays [1]. Deadline-aware
congestion control mechanism [23, 28] can help alleviate this
problem.

Real-time and time-sensitive OSs address related prob-
lems [11]. Similar to us, their goal is to respond to incoming
data within a predictable latency bound. To accomplish this,
these systems often need to perform admission control to
avoid overcommitting resources. As well, they need carefully
designed schedulers to bound worst-case scheduling delays,
and they must avoid long critical sections to prevent head-of-
line blocking and priority inversion. Typically, these systems
do not attempt to provide high throughput. In contrast, we are
focused on systems that run at relatively high utilization. We
recognize that some latency jitter or variation is inevitable due
to bursting arrivals, and our goal is to identify and eliminate
other sources of latency variation in the system.

The trade-off between energy and performance has been
explored in several previous systems. In DRAS, the authors
explored policies for load balancing requests across servers
and deciding when to power idle servers off, assuming
computationally intensive workloads [10], demonstrating that
a reduction in average power can be achieved with a slight
penalty in average latency. Similar observations were made
for the Salsa web server [8], though they also demonstrated
that request batching could further save energy. More recently,

Powertail demonstrated how to distribute load across servers
that support DVFS in such a way as to minimize energy while
guaranteeing a specified 99.9th percentile latency SLA [26]:
the load of individual servers should be driven up to a critical
utilization before spilling load to additional servers. These
projects’ results mirror our measurements of the tradeoff
between tail latency and CPU idle states on a single host,
and their proposed mechanisms for sculpting load balancing
policies to selectively enable hosts within a cluster should
be applicable in the context of routing requests to cores on a
single host.

Prior work has also explored the relationship between
the operating system, the network stack, and request laten-
cies. In IsoStack [18], the authors show the benefit of of-
floading network stack processing onto a dedicated core: the
improved cache behavior and reduced number of processor
context switches leads to higher throughput at lower utiliza-
tion, which presumably also can improve latency. LRP [7]
demonstrated the importance of queue management, the early
drop of load under high utilization, and performing network
stack work at the priority of the receiving application; these
techniques avoid livelock and improve latency under load.
Our work is complementary, in that we quantify the degree
to which similar mechanisms (such as using a dedicated core
for interrupt handling) has benefits for tail latency in modern
multicore systems.

6. Discussion
Our study reaffirmed the common belief that tail latency
is highly sensitive to background processes and daemons.
This suggests that we explore other ways of sharing CPU
resources, particularly in shared environments where we

would like to co-locate multiple latency-sensitive services
on the same host. Spatial scheduling – partitioning CPU
cores among applications – seems an attractive alternative to
conventional time-sharing. Others have proposed it as a way
to manage forthcoming large multicore systems [27], and
we believe that predictable latency provides another strong
motivation. We have already seen an example of its benefits,
in that dedicating certain cores to interrupt processing can
reduce tail latency.

There has been a longstanding debate in the systems com-
munity over the superiority of threads or events for man-
aging concurrency. Prior work has dissected their relative
merits in terms of performance, scalability, and programma-
bility [4, 24]. Our study adds a new angle to this old de-
bate: certain architectural choices affect the tail latency of a
network server. Thread-based architectures require a thread
scheduler that ensures FIFO ordering to achieve optimal tail
latency (and such a scheduler is not used by default in Linux).
Event-driven architectures must ensure that any request can
be handled by any worker; otherwise, as with Nginx, they will
negate the benefits of parallelism for reducing tail latency.

7. Conclusion
This paper explored hardware, OS, and application-level
causes of tail latency in multi-core servers. Known results
from queuing theory explain why the natural burstiness
in request arrival processes will introduce an unavoidable
baseline of variable queuing delay. As well, the theory
shows how increased utilization worsens the latency tail, how
parallelism can improve the latency tail, and the importance
of choosing an appropriate queuing discipline.

There are many additional complicating factors that affect
servers’ latency tails. To understand them, we instrumented
three applications: a multithreaded null RPC server, Mem-
cached, and the Nginx web server. Next, we measured these
servers’ response time distributions, demonstrating that their
latency tails are significantly worse than what queuing mod-
els would predict. Our instrumentation helped us to identify
the causes of the tail inflation, including interference from
background processes, request re-ordering by the OS sched-
uler or application concurrency framework, poor interrupt
routing, CPU power saving mechanisms, and NUMA effects.

We implemented several mechanisms and configuration
changes to fix these problems. To isolate the server from
background processes, we either use real-time scheduling
priorities or we isolate server threads/processes on dedicated
cores. To remedy non-FIFO OS scheduling, we modified
Linux’s scheduler. We showed that dedicating a core to
interrupt processing improves tail latency at a potential cost
to maximum throughput, and we showed that under low
utilization, CPU power savings mechanisms hurt tail latency.
Finally, to combat NUMA issues, we pin server processes or
threads to cores and force them to allocate memory from the
same NUMA node.

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

C
C

D
F

P

[X
 >

=
 x

]

Latency in micro-seconds

20000 packets/sec
40000 packets/sec
60000 packets/sec
80000 packets/sec

100000 packets/sec

Figure 11. Network fabric latency distribution as measured
using switch-generated timestamps.

Our modifications substantially improved the tail latency
of all three servers, to the point where they behave close to the
ideal distributions predicted by queuing models. For example,
we improved the 99.9th percentile latency of Memcached at
75% utilization from 5 ms to 32 µs, an improvement of more
than two orders of magnitude.

A. NIC-Induced Latency
As mentioned in Section 3, our latency measurements begin
and end in the network driver, when an incoming packet
arrival notification is received and when an outgoing packet
is placed in the NIC’s send queue respectively. This excludes
any tail latency caused by the network hardware itself. Here,
we quantify this latency and demonstrate that it is negligible
relative to the other factors we studied.

Our Arista 7150 switch can timestamp packets at nanosec-
ond granularity. While we were not able to use this function-
ality in most of our experiments because of the complexity of
synchronizing the switch and host timestamps, we use it here
to demonstrate that network fabric delay is consistent. We
collect additional timestamps T0 and T7 when request and re-
sponse packets traverse the switch. In this experiment, we use
the Memcached workload at various request rates. Figure 11
shows the distribution of T7−T0− (T6−T1), the difference
between our switch-measured and software-measured latency,
i.e., the latency introduced by network hardware. Because
the switch takes timestamps on packet ingress, this includes
any transmission delay and interrupt latency on the request
packet as well as NIC queuing delay in both directions. As
the figure demonstrates, the latency variance is substantially
lower than any of the other factors we studied, including
workload-inherent queuing delay.

Acknowledgements
We thank the anonymous reviewers and our shepherd Ymir
Vigfusson for their feedback. We thank the members of
the UW systems research group for many insightful and
lively discussions, including Katelin Bailey, Peter Hornyack,
Adriana Szekeres, Irene Zhang, Luis Ceze, and Hank Levy.
This work was supported by NSF grant CNS-1217597 and by
gift funding from Google, Microsoft, and Nortel Networks.

References
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan. DCTCP: Effi-
cient packet transport for the commoditized data center. In
Proceedings of ACM SIGCOMM 2010, New Delhi, India, Aug.
2010.

[2] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the outliers in
map-reduce clusters using Mantri. In Proceedings of the
9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’10), Vancouver, BC, Canada, Oct.
2010.

[3] CFS. Completely fair scheduler. https://www.

kernel.org/doc/Documentation/scheduler/

sched-design-CFS.txt.

[4] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazières, and R. Mor-
ris. Event-driven programming for robust software. In Pro-
ceedings of the 10th ACM SIGOPS European Workshop, St.
Emilion, France, Sept. 2002.

[5] J. Dean and L. A. Barroso. The tail at scale. Communications
of the ACM, 56(2):74–80, Feb. 2013.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Proceedings of the 6th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI ’04), San Francisco, CA, USA, Dec. 2004.

[7] P. Druschel and G. Banga. Lazy receiver processing (LRP):
A network subsystem architecture for server systems. In
Proceedings of the 2nd USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, WA, Oct.
1996.

[8] M. Elnozahy, M. Kistler, and R. Rajamony. Energy conser-
vation policies for web servers. In Proceedings of USITS 03:
4th USENIX Symposium on Internet Technologies and Systems,
Seattle, WA, Mar. 2003.

[9] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fon-
seca. Jockey: Guaranteed job latency in data parallel clusters.
In Proceedings of the 7th ACM SIGOPS EuroSys (EuroSys

’12), Bern, Switzerland, Apr. 2012.

[10] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A.
Kozuch. Distributed, robust auto-scaling policies for power
management in compute intensive server farms. In Proceedings
of the Sixth Open Cirrus Summit (OCS ’11), Atlanta, Georgia,
Oct. 2011.

[11] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole. Sup-
porting time-sensitive applications on a commodity OS. In
Proceedings of the 5th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI ’02), Boston, MA,
USA, Dec. 2002.

[12] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin,
and C. Yan. Speeding up distributed request-response work-
flows. In Proceedings of ACM SIGCOMM 2013, Hong Kong,
China, Aug. 2013.

[13] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat.
Chronos: Predictable low latency for data center applications.
In Proceedings of the 3rd Symposium on Cloud Computing
(SOCC ’12), San Jose, CA, USA, Oct. 2012.

[14] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, May 1998.

[15] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani. Scaling memcache
at Facebook. In Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’13),
Lombard, IL, USA, Apr. 2013.

[16] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bian-
chini. DeepDive: Transparently identifying and managing
performance interference in virtualized environments. In Pro-
ceedings of the 2013 USENIX Annual Technical Conference,
San Jose, CA, USA, June 2013.

[17] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open
versus closed: A cautionary tale. In Proceedings of the
3rd USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’06), San Jose, CA, May 2006.

[18] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda. IsoStack
– highly efficient network processing on dedicated cores. In Pro-
ceedings of the 2010 USENIX Annual Technical Conference,
Boston, MA, June 2010.

[19] L. Soares and M. Stumm. FlexSC: Flexible system call
scheduling with exception-less system calls. In Proceedings
of the 9th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’10), Vancouver, BC, Canada, Oct.
2010.

[20] SolarFlare. Filling the pipe: A guide to optimising mem-
cache performance on SolarFlare hardware. http://goo.gl/
FqwtkN.

[21] C. Stewart, A. Chakrabarti, and R. Grifth. Zoolander: Effi-
ciently meeting very strict, low-latency SLOs. In Proceedings
of the 10th International Conference on Autonomic Computing
(ICAC 13), San Jose, CA, June 2013.

[22] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload
analysis for decentralized hosting. Elsevier Computer Net-
works, 53(11):1830–1845, July 2009. http://www.globule.
org/publi/WWADH_comnet2009.html.

[23] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-aware
datacenter TCP (D2TCP). In Proceedings of ACM SIGCOMM
2012, Helsinki, Finland, Aug. 2012.

[24] R. von Behren, J. Condit, and E. Brewer. Why events are a bad
idea (for high-concurrency servers). In Proceedings of the 9th
Workshop on Hot Topics in Operating Systems (HotOS ’03),
Lihue, HI, USA, May 2003.

[25] Q. Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu,
M. Matsubara, M. Kawaba, and C. Pu. Detecting transient
bottlenecks in n-tier applications through fine-grained analysis.
In Proceedings of the 33rd IEEE International Conference on
Distributed Computing Systems (ICDCS ’13), Philadelphia, PA,
USA, June 2013.

[26] S. Wang, W. Munawar, J. Liu, J.-J. Chen, and X. Liu. Power-
saving design for server farms with response time percentile
guarantees. In Proceedings of the 18th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS
2012), Beijing, China, Apr. 2012.

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
http://goo.gl/FqwtkN
http://goo.gl/FqwtkN
http://www.globule.org/publi/WWADH_comnet2009.html
http://www.globule.org/publi/WWADH_comnet2009.html

[27] D. Wentzlaff and A. Agarwal. Factored operating systems
(fos): The case for a scalable operating system for multicores.
Operating Systems Review, 42(2):76–85, Apr. 2009.

[28] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better
never than late: Meeting deadlines in datacenter networks. In
Proceedings of ACM SIGCOMM 2011, Toronto, ON, Canada,
Aug. 2011.

[29] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail:
Avoiding long tails in the cloud. In Proceedings of the
10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’13), Lombard, IL, USA, Apr. 2013.

[30] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving MapReduce performance in heterogeneous envi-
ronments. In Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’08),
San Diego, CA, USA, Dec. 2008.

[31] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI

’12), San Jose, CA, USA, Apr. 2012.

	Introduction
	Queuing Models and Predicted Latency
	Arrival distributions
	Utilization
	Parallel servers feeding from one queue
	Queuing discipline

	Measurement Method
	Applications
	Null RPC server
	Memcached
	Nginx

	Deriving the ideal distribution
	Testbed
	Timestamping

	Sources of Tail Latency
	Background Processes
	Non-FIFO Scheduling
	Multicore
	Interrupt Processing
	NUMA Effects
	Power Saving Optimizations
	Summary

	Related Work
	Discussion
	Conclusion
	NIC-Induced Latency

