Randomized Consensus

FLP Impossibility

Theorem: In an asynchronous environment in which a
single process can fail by crashing, there does not exist a
protocol which solves binary consensus.

Paxos doesn't save us. It doesn't guarantee liveness.

Result assumed a deterministic computation model.

Let's go random!

Ben-Or's algorithm uses randomization to guarantee
consensus for crash failures when f<n/2.

A variant even works for Byzantine faults!

Intuition

At first every process
proposes their input value.

After that, they propose
random values.

When enough processes
propose the same value,
the value is chosen.

Eventually, that will
happen!

Setup

Again, we're considering binary consensus.

Protocol proceeds in asynchronous rounds, where
each round has two phases.

For each phase, processes broadcast their input values
and wait for n — f messages from the other processes.

Each message is tagged with the round and phase
number. (And messages can be resent to deal with a
lossy network. But once a message is sent, that value
is locked in for that process for that phase/round.)

Ben-Or Algorithm

Processes send proposals for each a—input
phase and then block and wait for loop:

the requisite n — f messages send_phasel(a)

A<«receive_phasel()

if(3a’e A:|A,|>n/2):
During the first phase, processes bea’

make a preliminary proposal. e'se:b .

(including their own).

If they receive matching responses send_ phase2(b)

from a majority in the first phase, Bereceive_phase2()
they propose that value in the if 3b’e B:b'%L A |By| > f):
second phase. Otherwise, they decide(b)
propose L (a special null value). if(3b°e B:b%L):

a<b’
If they get enough non-_L responses else:

from the second phase, they decide. a«choose_random({0,1})

Do We Have Consensus?

e Agreement: No two a<input

processes decide loop:

. send_phasel(a)
different values.

A<«receive_phasel()

if (Ja’e A:|A,|>n/2):

o Integrity: Every process bea’
. |se:
decides at most one —
value, and if a process send. phase2(s)
decides a Value, some B<«receive_phase2()
process had it as its input. t@b'e B:b= L A[By|> 1)
decide(d)
if(3b'e B:b'#1):

e Termination: Every e

correct process eventually else:
decides a Value a<—choose_random({0,1})

Integrity I

If both 0 and 1 are input values to
processes, integrity is trivially
satisfied.

Suppose all processes have the
same input value.

* Then, they all send the same
phase 1 value in round 1.

* So they all send that same
value in phase 2.

* So they all decide that value
at the end of round 1.

a<—input

loop:
send_phasel(a)
A<«receive_phasel()
if (3a’e A:|A,| > n/2):

b<—a’
else:
b—_1

send_phase2(b)

B<receive_phase2()

if (3b’e B:b'=L A |By| > /)
decide(b)

if (3b’e B:b'=1):

a<—b’
else:
a<—choose _random({0,1})

Fun Fact

Lemma: No two processes
receive different non-_L

phase 2 values in the same
round.

Suppose they did. That
means that one process
received Os from a majority
in phase 1 and another
received 1s.

But majorities intersect!

a<—input

loop:

send_phasel(a)
A<receive_phasel()
if (3a’e A:|A,| > n/2):

b<—a’
else:
b—_1

send_phase2(b)

B<«receive_phase2()

if (3b’e B:b'=L A|By| > /)
decide(b)

if (3b’e B:b'=1):

a<—b’
else:
a<—choose _random({0,1})

Agrement + Integrity I

Let round r be the first round any
process decides a value, O w.l.o.g.

If a process decided a value, it must
have received > f Os in phase 2.

Which means that every process
received at least one O because they

all wait for n — f messages. No

process received a 1 by the previous
lemma.

Therefore, on round r + 1 (and all
subsequent rounds), all processes

propose 0 and all processes decide 0.

a<input

loop:

send_phasel(a)
A<receive_phasel()
if (3a’e A:|A,|>n/2):

/

b<—a
else:
b—_1

send_phase2(b)

B<receive_phase2()

if (3b’e B:b'=L A |By| > f):
decide(b)

if (3b’e B:b'#1):

a<—b’
else:
a<—choose _random({0,1})

Termination

We know that if all processes
propose the same value for a round,
they all decide that value that
round.

At worst, the probability of this
happening on any particular round

is 1/2n.

Why? By the previous lemma, all the
non-random values are identical.

Over time, the probability of this
happening on at least one round
converges to 1.

a<input

loop:

send_phasel(a)
A<receive_phasel()
if(3a’e A:|A,|>n/2):

/

b<—a
else:
b—_1

send_phase2(b)

B<«receive_phase2()

if (3b’e B:b'=L A|By| > 1)
decide(b)

if (3b’e B:b'=1):

a<b’
else:;

a<—choose _random({0,1})

Other Values?

Binary consensus is conceptually
simple but not as useful. However, the
algorithm can be to support larger
domains, even when the processes
don't know the domains a priori and
even when some processes don't
receive input values.

* Processes without input values start
by proposing L.

* |Instead of randomly choosing from
{0,1}, processes randomly choose
from all non-_L values they've seen

so far (in any message). Only choose
1 as a last resort.

a<input

loop:

send_phasel(a)
A<receive_phasel()
if (3a’e A:|A,|>n/2):

/

b<—a
else:
b—_1

send_phase2(b)
B<«receive_phase2()
if (3b’e B:b'=L A|By| > f):
decide(b)
if (3b’e B:b'#1):
a<—b’

else:
a<—choose_random({0,1})

Takeaways

e Randomization can actually solve consensus*

* You can structure an asynchronous protocol using
rounds. It's potentially useful and certainly an

interesting way to think about asynchronous
computation.

