
Randomized	Consensus



FLP	Impossibility

Theorem:	In	an	asynchronous	environment	in	which	a	
single	process	can	fail	by	crashing,	there	does	not	exist	a	
protocol	which	solves	binary	consensus.	

Paxos	doesn't	save	us.	It	doesn't	guarantee	liveness.	

Result	assumed	a	deterministic	computation	model.



Let's	go	random!

Ben-Or's	algorithm	uses	randomization	to	guarantee	
consensus	for	crash	failures	when	𝑓	<	𝑛/2.	

A	variant	even	works	for	Byzantine	faults!



Intuition

• At	first	every	process	
proposes	their	input	value.	

• After	that,	they	propose	
random	values.	

• When	enough	processes	
propose	the	same	value,	
the	value	is	chosen.	

• Eventually,	that	will	
happen!

𝑝1 𝑝2 𝑝3 𝑝n...
0→ → → →1 0 1

0 1 0 1

𝑝1 𝑝2 𝑝3 𝑝n...

1 0 1 1

𝑝1 𝑝2 𝑝3 𝑝n...

0 0 0 0

0 0 0 0



Setup

• Again,	we're	considering	binary	consensus.	
• Protocol	proceeds	in	asynchronous	rounds,	where	
each	round	has	two	phases.	

• For	each	phase,	processes	broadcast	their	input	values	
and	wait	for	𝑛	–	𝑓	messages	from	the	other	processes.	

• Each	message	is	tagged	with	the	round	and	phase	
number.	(And	messages	can	be	resent	to	deal	with	a	
lossy	network.	But	once	a	message	is	sent,	that	value	
is	locked	in	for	that	process	for	that	phase/round.)



Ben-Or	Algorithm

𝑎←input 

loop: 

        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 

                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})

Processes	send	proposals	for	each	
phase	and	then	block	and	wait	for	
the	requisite	𝑛	–	𝑓	messages	
(including	their	own).	

During	the	first	phase,	processes	
make	a	preliminary	proposal.	

If	they	receive	matching	responses	
from	a	majority	in	the	first	phase,	
they	propose	that	value	in	the	
second	phase.	Otherwise,	they	
propose	⊥	(a	special	null	value).	

If	they	get	enough	non-⊥	responses	
from	the	second	phase,	they	decide.



Do	We	Have	Consensus?

• Agreement: No two 
processes decide 
different values. 

• Integrity: Every process 
decides at most one 
value, and if a process 
decides a value, some 
process had it as its input. 

• Termination: Every 
correct process eventually 
decides a value.

𝑎←input 

loop: 

        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 
                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



Integrity	I

If	both	0	and	1	are	input	values	to	
processes,	integrity	is	trivially	
satisfied.	

Suppose	all	processes	have	the	
same	input	value.	

• Then,	they	all	send	the	same	
phase	1	value	in	round	1.	

• So	they	all	send	that	same	
value	in	phase	2.	

• So	they	all	decide	that	value	
at	the	end	of	round	1.

𝑎←input 

loop: 

        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 

                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



Fun	Fact

Lemma:	No	two	processes	
receive	different	non-⊥	
phase	2	values	in	the	same	
round.	

Suppose	they	did.	That	
means	that	one	process	
received	0s	from	a	majority	
in	phase	1	and	another	
received	1s.	

But	majorities	intersect!

𝑎←input 

loop: 

        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 

                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



Agrement	+	Integrity	II

Let	round	𝑟	be	the	first	round	any	
process	decides	a	value,	0	w.l.o.g.	

If	a	process	decided	a	value,	it	must	
have	received	>𝑓	0s	in	phase	2.	

Which	means	that	every	process	
received	at	least	one	0	because	they	
all	wait	for	𝑛	–	𝑓	messages.	No	
process	received	a	1	by	the	previous	
lemma.	

Therefore,	on	round	𝑟	+	1	(and	all	
subsequent	rounds),	all	processes	
propose	0	and	all	processes	decide	0.

𝑎←input 

loop: 

        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 

                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



Termination

We	know	that	if	all	processes	
propose	the	same	value	for	a	round,	
they	all	decide	that	value	that	
round.	

At	worst,	the	probability	of	this	
happening	on	any	particular	round	
is	1/2𝑛.	

Why?	By	the	previous	lemma,	all	the	
non-random	values	are	identical.	

Over	time,	the	probability	of	this	
happening	on	at	least	one	round	
converges	to	1.

𝑎←input 

loop: 

        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 
                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



Other	Values?

Binary	consensus	is	conceptually	
simple	but	not	as	useful.	However,	the	
algorithm	can	be	to	support	larger	
domains,	even	when	the	processes	
don't	know	the	domains	a	priori	and	
even	when	some	processes	don't	
receive	input	values.	

• Processes	without	input	values	start	
by	proposing	⊥.	

• Instead	of	randomly	choosing	from	
{0,1},	processes	randomly	choose	
from	all	non-⊥	values	they've	seen	
so	far	(in	any	message).	Only	choose	
⊥	as	a	last	resort.

𝑎←input 

loop: 

        send_phase1(𝑎) 

        𝐴←receive_phase1() 

        if (∃𝑎ʹ ∈ 𝐴 : |𝐴𝑎ʹ| > 𝑛/2): 

                𝑏←𝑎ʹ 
        else: 

                𝑏←⊥ 

        send_phase2(𝑏) 

        𝐵←receive_phase2() 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥ ∧ |𝐵𝑏ʹ| > 𝑓): 

                decide(𝑏ʹ) 

        if (∃𝑏ʹ ∈ 𝐵 : 𝑏ʹ≠⊥): 

                𝑎←𝑏ʹ 
        else: 

                𝑎←choose_random({0,1})



Takeaways

• Randomization	can	actually	solve	consensus*		

• You	can	structure	an	asynchronous	protocol	using	
rounds.	It's	potentially	useful	and	certainly	an	
interesting	way	to	think	about	asynchronous	
computation.


