SAFETY, LIVENESS, AND
CONSISTENCY

How Do We Specity Distributed Systems?

Execution: Sequence of events (i.e., steps taken by
the system), potentially infinite.

Property: A predicate on executions.

Safety property: Specifies the "bad things" that
shouldn't happen in any execution.

Liveness property: Specifies the "good things" that
should happen In every execution.

(See paper for formal definitions.)

Theorem: Every property is expressible as the
conjunction of a safety property and a
liveness property.

[Alpern and Schneider. 198/]

Some Properties

The system never deadlocks.

Every client that sends a request eventually gets a
reply.

Both generals attack simultaneously.

More Properties: Consensus

n processes, all of which have an input value from some domain.
Processes output a value by calling decide(v).

Non-faulty processes continue correctly executing protocol steps
forever. We usually denote the number of faulty processes f.

Agreement: No two correct processes decide different
values.

Integrity: Every correct process decides at most one
value, and it a correct process decides a value v, some

process had v as its input.

Termination: Every correct process eventually decides
a value.

Consistency is Key!

Consistency: the allowed semantics (return values) of
a set of operations to a data store or shared object.

Consistency properties specity the interface, not the
implementation. The data might be replicated,
cached, disaggregated, etc. "Weird" consistency
semantics happen all over the stack!

Anomaly: violation of the consistency semantics

Terminology

Strong consistency: the system behaves as if there's
just a single copy of the data (or almost behaves that
way).

The intuition Is that things like caching and sharding
are implementation decisions and shouldn't be visible
to clients.

Weak consistency: allows behaviors significantly
different from the single store model.

Eventual consistency: the aberrant behaviors are
only temporary.

Why the Difference”

Performance

Consistency requires synchronization/coordination
when data is replicated

Often slower to make sure you always return right
answer

Availability
What if client is offline, or network is not working”
Weak/eventual consistency may be only option
Programmability

Weaker models are harder to reason against

| amport's Register Semantics

Registers hold a single value. Here,
we consider single-writer registers

only supporting write and read.

Semantics defined in terms of the
real-time beginnings and ends of
operations to the object.

safe: a read not concurrent with
any write obtains the previously
written value

regular: safe + a read that
overlaps a write obtains either the
old or new value

atomic: safe + reads and writes
behave as if they occur in some
definite order

AT v I =
) —(0)

safe=r| 2 a

regular=r; 2 aA(rr>avr, > b)A

(r3s = avr3—b)

atomic=r 2 aAn(rr>avr, > b)A

(rs—avr3 = b)A
(. >b=r3—Db)

Seqguential Consistency

Applies to arbitrary shared objects.

Requires that a history of operations be equivalent to a
legal sequential history, where a legal sequential

history Is one that respects the local ordering at each
node.

Called serializability when applied to transactions

s It Sequential?

D2

P3

S It
Sequential?

w(2)

w(b)

P2

P3

P4

S It
Sequential?

w(b)

P2

P3

P4

S It
Sequential?

D2

P3

D4

S It
Sequential?

w(2)

w(b)

_}
r—a r—a

s It Sequential?

w(a) r—*a r—a r—a w(b) r—b

P2

P3

P4

S It
Sequential?

w(b)

Linearizabllity

Linearizability = sequential consistency + respects
real-time ordering.

If e1 ends before e> begins, then e1 appears before e
In the sequential history.

Linearizable data structures behave as if there's a
single, correct copy.

Atomic reqisters are linearizable.

P4

IS It
i
inearizable”?

s |t Linearizable”

P1 0 e
w(b
P2 ! e ‘<> 2 o
r— 3 r—b
P3 E e e
P Winde)

Linearizability vs. Sequential Consistency

Seqguential consistency allows operations to appear
out of real-time order. How could that happen in
reality”?

The most common way systems are sequentially
consistency but not linearizability is that they allow
read-only operations to return stale data.

Stale Reads

%Drimary Copy

—

>
-?ead—only Cache

Causal Consistency

Writes that are not concurrent (i.e., writes related by
the happens-before relation) must be seen in that
order. Concurrent writes can be seen in different
orders on ditferent nodes.

Linearizablility implies causal consistency.

s |t Causal?

D1 w(a) We need to know
w(b) what causes what
D2 (1.e., what messages
are sent)!
P3

P4

Pp3

D4

s |t Causal?

YES!
But not

sequential.

s |t Causal?

Not causall
(or sequential)

Cool Theorem: Causal consistency” is the strongest
form of consistency that can be provided in an
always-available convergent system.

Basically, if you want to process writes even in the
presence of network partitions and failures, causal
consistency is the best you can do.

[Mahajan et 2. UTCSTR-| |_22] *real-time causal consistency

We Can Get Weaker!

FIFO Consistency: writes done by the same process
are seen Iin that order; writes to different processes
can be seen in different orders. Equivalent to the
PRAM model.

Eventual Consistency = if all writes to an object stop,
eventually all processes read the same value. (Not
even a safety property! "Eventual consistency is no
consistency.")

Lamport's register semantics, sequential
consistency, linearizability, and causal
consistency, and FIFO consistency are all

safety properties.

Using Consistency Guarantees

Depends on

memory
Thread 1 Thread 2 consistency!

a =1 b=1
print("b:" + b) print("a:" + a)

Initially, both a and b are 0.

What are the possible outputs of this program?

Using Consistency Guarantees

Thread 1 Thread 2
print(-b7" + rint("a:" + a)

Suppose both prints output O.

Then there's a cycle in the happens-before graph.
Not sequential!

Aside: Java's Memory Model

Java Is not sequentially consistent!

It guarantees sequential consistency only when the
program Is data-race free.

A data-race occurs when two threads access the
same memory location concurrently, one of the
aCCesSses IS a write, and the accesses are not
orotected by locks (or monitors etc.).

How to Use Weak Consistency”

Separate operations with stronger semantics, weak
consistency (and high performance) by default

Application-level protocols, either using separate
communication, or extra synchronization variables in
the data store (not always possible)

Main [lakeaways

The weaker the consistency model, the harder it is to
program against (usually).

The stronger the model, the harder it is to enforce
(again, usually).

