
SAFETY, LIVENESS, AND 
CONSISTENCY



How Do We Specify Distributed Systems?

Execution: Sequence of events (i.e., steps taken by 
the system), potentially infinite.

Property: A predicate on executions. 

Safety property: Specifies the "bad things" that 
shouldn't happen in any execution. 

Liveness property: Specifies the "good things" that 
should happen in every execution. 

(See paper for formal definitions.)



Theorem: Every property is expressible as the 
conjunction of a safety property and a 

liveness property.

[Alpern and Schneider. 1987]

Neat automata 
theory!



Some Properties

The system never deadlocks. 

Every client that sends a request eventually gets a 
reply. 

Both generals attack simultaneously.



More Properties: Consensus
𝑛 processes, all of which have an input value from some domain. 
Processes output a value by calling  decide(𝑣).  

Non-faulty processes continue correctly executing protocol steps 
forever. We usually denote the number of faulty processes 𝑓. 

Agreement: No two correct processes decide different 
values.

Integrity: Every correct process decides at most one 
value, and if a correct process decides a value 𝑣, some 
process had 𝑣 as its input.

Termination: Every correct process eventually decides 
a value.



Consistency is Key!

Consistency: the allowed semantics (return values) of 
a set of operations to a data store or shared object. 

Consistency properties specify the interface, not the 
implementation. The data might be replicated, 
cached, disaggregated, etc. "Weird" consistency 
semantics happen all over the stack! 

Anomaly: violation of the consistency semantics



Terminology

Strong consistency: the system behaves as if there's 
just a single copy of the data (or almost behaves that 
way). 

The intuition is that things like caching and sharding 
are implementation decisions and shouldn't be visible 
to clients. 

Weak consistency: allows behaviors significantly 
different from the single store model. 

Eventual consistency: the aberrant behaviors are 
only temporary.



Why the Difference?

Performance 
Consistency requires synchronization/coordination 
when data is replicated 
Often slower to make sure you always return right 
answer 

Availability 
What if client is offline, or network is not working? 
Weak/eventual consistency may be only option 

Programmability
Weaker models are harder to reason against



Lamport's Register Semantics
Registers hold a single value. Here, 
we consider single-writer registers 
only supporting write and read. 

Semantics defined in terms of the 
real-time beginnings and ends of 
operations to the object. 

safe: a read not concurrent with 
any write obtains the previously 
written value 

regular: safe + a read that 
overlaps a write obtains either the 
old or new value 

atomic: safe + reads and writes 
behave as if they occur in some 
definite order

w(a) w(b)

r1 r2 r3

safe ⇒ r1 → a

regular ⇒ r1 → a ∧ (r2 → a ∨ r2 → b) ∧  

                (r3 → a ∨ r3 → b)

atomic ⇒ r1 → a ∧ (r2 → a ∨ r2 → b) ∧  

                (r3 → a ∨ r3 → b) ∧ 
                (r2 → b ⇒ r3 → b)



Sequential Consistency

Applies to arbitrary shared objects. 

Requires that a history of operations be equivalent to a 
legal sequential history, where a legal sequential 
history is one that respects the local ordering at each 
node. 

Called serializability when applied to transactions



Is It Sequential?



Is It Sequential?

w(a)

w(b)

r→a r→b

p1

p2

p3

YES.



Is It Sequential?

w(a)

w(b)

r→a r→b

r→c

p1

p2

p3

p4

NO.



Is It Sequential?

w(a)

w(b)

r→c r→a

r→b

p1

p2

p3

p4

NO.w(c)



Is It Sequential?

w(a)

w(b)

r→a r→b

r→a r→a

p1

p2

p3

p4



Is It Sequential?

w(a) w(b)r→a r→br→a r→a

p1

p2

p3

p4

YES!



Is It Sequential?

w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

NO.



Linearizability

Linearizability = sequential consistency + respects 
real-time ordering. 

If 𝑒1 ends before 𝑒2 begins, then 𝑒1 appears before 𝑒2 
in the sequential history. 

Linearizable data structures behave as if there's a 
single, correct copy.



Atomic registers are linearizable.



Is It Linearizable?

w(a)

w(b)

r→a r→b

r→a r→b

p1

p2

p3

p4

NO.



Is It Linearizable?

w(b)

r→a r→b

r→a r→b

p1

p2

p3

p4

YES!

w(a)



Linearizability vs. Sequential Consistency

Sequential consistency allows operations to appear 
out of real-time order. How could that happen in 
reality? 

The most common way systems are sequentially 
consistency but not linearizability is that they allow 
read-only operations to return stale data.



Stale Reads

Primary Copy

Read-only Cache

write



Causal Consistency

Writes that are not concurrent (i.e., writes related by 
the happens-before relation) must be seen in that 
order. Concurrent writes can be seen in different 
orders on different nodes. 

Linearizability implies causal consistency.



Is It Causal?

w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

We need to know 
what causes what 

(i.e., what messages 
are sent)!



Is It Causal?

w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

YES! 
But not 

sequential.



Is It Causal?

w(a)

w(b)

r→a r→b

r→b r→a

p1

p2

p3

p4

r→b
Not causal!

(or sequential)



Cool Theorem: Causal consistency* is the strongest 
form of consistency that can be provided in an 
always-available convergent system. 

Basically, if you want to process writes even in the 
presence of network partitions and failures, causal 
consistency is the best you can do.

*real-time causal consistency[Mahajan et al. UTCS TR-11-22]



We Can Get Weaker!

FIFO Consistency: writes done by the same process 
are seen in that order; writes to different processes 
can be seen in different orders. Equivalent to the 
PRAM model. 

Eventual Consistency ≈ if all writes to an object stop, 
eventually all processes read the same value. (Not 
even a safety property! "Eventual consistency is no 
consistency.")



Lamport's register semantics, sequential 
consistency, linearizability, and causal 
consistency, and FIFO consistency are all 
safety properties.



Using Consistency Guarantees

Thread 1 
 
a = 1 
print("b:" + b)

Thread 2 
 
b = 1 
print("a:" + a)

Initially, both a and b are 0. 

What are the possible outputs of this program?

Depends on 
memory 

consistency!



Using Consistency Guarantees

Thread 1 
 
a = 1 
print("b:" + b)

Thread 2 
 
b = 1 
print("a:" + a)

Suppose both prints output 0. 

Then there's a cycle in the happens-before graph. 
Not sequential!



Aside: Java's Memory Model

Java is not sequentially consistent! 

It guarantees sequential consistency only when the 
program is data-race free. 

A data-race occurs when two threads access the 
same memory location concurrently, one of the 
accesses is a write, and the accesses are not 
protected by locks (or monitors etc.).



How to Use Weak Consistency?

Separate operations with stronger semantics, weak 
consistency (and high performance) by default 

Application-level protocols, either using separate 
communication, or extra synchronization variables in 
the data store (not always possible)



Main Takeaways

The weaker the consistency model, the harder it is to 
program against (usually). 

The stronger the model, the harder it is to enforce 
(again, usually).


