
Vector Clocks &
Distributed snapshots

CS 452

Logistics

Problem Set 1 posted: due on Jan 27th

No class on Monday (holiday) and Wednesday (I’m
out of town)

Vector clocks

Precisely represent transitive causal relationships

T(A) < T(B) <-> happens-before(A, B)

Idea: track events known to each node, on each node

Used in practice for eventual and causal consistency

- git, Amazon Dynamo, …

Vector clocks

Clock is a vector C, length = # of nodes

On node i, increment C[i] on each event

On receipt of message with clock Cm on node i:

- increment C[i]

- for each j != i

- C[j] = max(C[j], Cm[j])

Example

S1 S2 S3

A (T = ?)

B (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (T = ?)

send M (2,0,0)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (T = ?)
D (0,0,1)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (2,3,2)
D (0,0,1)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (2,3,2)
D (0,0,1)

E (2,3,3)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (2,3,2)
D (0,0,1)

E (2,3,3)

Vector Clocks

Compare vectors element by element

Provided the vectors are not identical,

If Cx[i] < Cy[i] and Cx[j] > Cy[j] for some i, j

Cx and Cy are concurrent

if Cx[i] <= Cy[i] for all i

Cx happens before Cy

S1

S2

S3

Timestamp: 0
Queue: [S1@0]
S1max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S2max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S1max: 0
S2max: 0

S1

S2

S3

Timestamp: 0,0,0
Queue: [S1@0,0,0]

Timestamp: 0,0,0
Queue: [S1@0,0,0]

Timestamp: 0,0,0
Queue: [S1@0,0,0]

S1

S2

S3

Timestamp: 0,1,0
Queue: [S1@0,0,0]

Timestamp: 0,0,0
Queue: [S1@0,0,0]

Timestamp: 0,0,0
Queue: [S1@0,0,0]

request@0,1,0 request@0,1,0

S1

S2

S3

Timestamp: 0,1,0
Queue: [S1@0,0,0
S2@0,1,0]

Timestamp: 1,1,0
Queue: [S1@0,0,0;
S2@0,1,0]

Timestamp: 0,1,1
Queue: [S1@0,0,0;
S2@0,1,0]

S1

S2

S3

Timestamp: 0,1,0
Queue: [S1@0,0,0
S2@0,1,0]

Timestamp: 2,1,0
Queue: [S1@0,0,0;
S2@0,1,0]

Timestamp: 0,1,2
Queue: [S1@0,0,0;
S2@0,1,0]

ack@2,1,0 ack@0,1,2

S1

S2

S3

Timestamp: 2,2,2
Queue: [S1@0,0,0
S2@0,1,0]

Timestamp: 2,1,0
Queue: [S1@0,0,0;
S2@0,1,0]

Timestamp: 0,1,2
Queue: [S1@0,0,0;
S2@0,1,0]

S1

S2

S3

Timestamp: 2,2,2
Queue: [S1@0,0,0
S2@0,1,0]

Timestamp: 3,1,0
Queue: [S1@0,0,0;
S2@0,1,0]

Timestamp: 0,1,2
Queue: [S1@0,0,0;
S2@0,1,0]

release@3,1,0

release@3,1,0

S1

S2

S3

Timestamp: 3,3,2
Queue: [S2@0,1,0]

Timestamp: 3,1,0
Queue: [S2@0,1,0]

Timestamp: 3,1,3
Queue: [S2@0,1,0]

S1

S2

S3

Timestamp: 3,4,2
Queue: [S2@0,1,0]

Timestamp: 3,1,0
Queue: [S2@0,1,0]

Timestamp: 3,1,4
Queue: [S2@0,1,0]

ack@3,4,2

ack@3,1,4

S1

S2

S3

Timestamp: 3,4,2
Queue: [S2@0,1,0]

Timestamp: 4,4,4
Queue: [S2@0,1,0]

Timestamp: 3,1,4
Queue: [S2@0,1,0]

Some terms
Often useful: states, executions, reachability

- A state is a global state S of the system: states at all nodes
+ channels

- An execution is a series of states Si s.t. the system is
allowed to transition from Si to Si+1

- A state Sj is reachable from Si if, starting in Si, it’s possible for
the system to end up at Sj

Types of properties: stable properties, invariants

- A property P is stable if

P(Si) -> P(Si+1)

- A property P is an invariant if it holds on all reachable states

Token conservation system

Node 1 Node 2

haveToken: bool haveToken: bool

token

In So

- No messages

- Node 1 has haveToken = true

- Node 2 has haveToken = false

Nodes can send each other the token or discard the token

Token conservation system

Node 1 Node 2

haveToken: bool haveToken: bool

token

Invariant: token in at most one place

Stable property: no token

Token conservation system

Node 1 Node 2

haveToken: bool haveToken: bool

token

How can we check the invariant at runtime?

How can we check the stable property at runtime?

Distributed snapshots

Why do we want snapshots?

- Detect stable properties (e.g., deadlock)

- Distributed garbage collection

- Diagnostics (is invariant still true?)

Distributed snapshots

Record global state of the system

- Global state: state of every node, every channel

Challenges:

- Physical clocks have skew

- State can’t be an instantaneous global snapshot

- State must be consistent

• Consistent	global	state:	causal	dependencies	are	captured	

• If	a	snapshot	of	a	node	includes	some	events	

• All	causally	earlier	events	should	be	part	of	snapshots	
of	other	nodes

Consistent snapshots

Space Time Diagrams

p1

p2

p3

Cuts

p1

p2

p3

A	cut	C	is	a	subset	of	the	global	history	of	H	

Consistent Cuts
• A	cut	is	consistent	if	
• e2	is	in	the	cut	and	if	e1	happens	before	e2	
• then	e1	should	also	be	in	the	cut	

• A	consistent	global	state	is	one	corresponding	to	a	
consistent	cut	

Inconsistent Cut (or global state)

p1

p2

p3

Physical time algorithm

What if we could trust clocks?

Idea:

- Node: “hey, let’s take a snapshot @ noon”

- At noon, everyone records state

- How to handle channels?

Physical time algorithm

Channels:

- Timestamp all messages

- Receiver records channel state

- Channel state = messages received after noon but
sent before noon

Example: is there <= 1 token in the system?

Physical time algorithm

Node 1 Node 2

haveToken = true haveToken = false

11:59

Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = false

11:59

token@11:59

Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = false

12:00

Snapshot:
- haveToken = false

Snapshot:
- haveToken = false

Snapshot:
- token@11:59

Physical time algorithm

This seems like it works, right?

What could go wrong?

Physical time algorithm

Node 1 Node 2

haveToken = true haveToken = false

11:59 11:58

Physical time algorithm

Node 1 Node 2

haveToken = true haveToken = false

12:00

Snapshot:
- haveToken = true

11:59

Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = false

12:00

Snapshot:
- haveToken = true

11:59

token@12:00

Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = true

12:00

Snapshot:
- haveToken = true

11:59

Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = true

12:01

Snapshot:
- haveToken = true

12:00

Snapshot:
- haveToken = true

Avoiding inconsistencies

As we’ve seen, physical clocks aren’t accurate enough

Need to use messages to coordinate snapshot

=> make sure Node 2 takes snapshot before receiving
any messages sent after Node 1 takes snapshot

Better algorithm

Node 1 Node 2

haveToken = true haveToken = false

11:59 11:58

Better algorithm

Node 1 Node 2

haveToken = true haveToken = false

12:00

Snapshot:
- haveToken = true

11:59

snapshot@12:00

Better algorithm

Node 1 Node 2

haveToken = false haveToken = false

12:00

Snapshot:
- haveToken = true

11:59

snapshot@12:00
token@12:00

Better algorithm

Node 1 Node 2

haveToken = false haveToken = false

12:00

Snapshot:
- haveToken = true

11:59

token@12:00

Snapshot:
- haveToken = false

Better algorithm

Node 1 Node 2

haveToken = false haveToken = true

12:00

Snapshot:
- haveToken = true

11:59

Snapshot:
- haveToken = false

Better algorithm

Node 1 Node 2

haveToken = false haveToken = true
Snapshot:
- haveToken = true

Snapshot:
- haveToken = false

Distributed Snapshots

As we’ve seen, physical clocks aren’t accurate enough

Need to use messages to coordinate snapshot

=> make sure Node 2 takes snapshot before receiving
any messages sent after Node 1 takes snapshot

Chandy-Lamport Snapshots

At any time, a node can decide to snapshot

- Actually, multiple nodes can

That node:

- Records its current state

- Sends a “marker” message on all channels

When a node receives a marker, snapshot

- Record current state

- Send marker message on all channels

How to record channel state?

Chandy-Lamport Snapshots

Channel state recorded by the receiver

Recorded when marker received on that channel

- Why do we know we’ll receive a marker on every
channel?

When marker received on channel, record:

- Empty, if this is the first marker

- Messages received on channel since we
snapshotted, otherwise

Chandy-Lamport Snapshots

B A M

D M C

E M F

Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = true haveToken = false

Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = false

token

Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = false

token

Snapshot:
- haveToken = false

marker

Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = false

token

Snapshot:
- haveToken = false

Snapshot:
- haveToken = false

marker

Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = true
Snapshot:
- haveToken = false

Snapshot:
- haveToken = false

marker

In-flight:
- token

Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = true
Snapshot:
- haveToken = false

Snapshot:
- haveToken = false

Snapshot:
- token

Chandy-Lamport Snapshots

What if multiple nodes initiate the snapshot?

- Follow same rules: send markers on all channels

Intuition:

- All initiators are concurrent

- Concurrent snapshots are ok, as long as we
account for messages in flight

- If receive marker before initiating, must snapshot to
be consistent with other nodes

Consistent Cut

A cut is the set of events on each node in the system
that are included in the snapshot

A consistent cut is a cut that respects causality

If an event is included by any node, all events that
“happen before” the event are also included

