
Primary/Backup
CS 452



Single-node key/value store

Client Redis

Client

Client
Put “key1” “value1”

Put “key2” “value2”

Get “key1”



Single-node state machine

Client

Client

Client

Op1 args1

Op2 args2

Op args3

State machine



Single-node state machine

Client

Client

Client

Op1 args1

Op2 args2

Op args3

State machine

x



Single-node state machine

Client

Client

Client

Op1 args1

Op2 args2

Op args3

State machine

?



State machine replication

Replicate the state machine across multiple servers 

Clients can view all servers as one state machine 

What’s the simplest form of replication?



Two servers!

At a given time: 

- Clients talk to one server, the primary 

- Data are replicated on primary and backup 

- If the primary fails, the backup becomes primary 

Goals: 

- Correct and available 

- Despite some failures



Basic operation

Clients send operations (Put, Get) to primary 

Primary decides on order of ops 

Primary forwards sequence of ops to backup 

Backup performs ops in same order (hot standby) 

- Or just saves the log of operations (cold standby) 

After backup has saved ops, primary replies to client

Client Primary BackupOps Ops



Challenges

Non-deterministic operations 

Dropped messages 

State transfer between primary and backup 

- Write log? Write state? 

There can be only one primary at a time 

- Clients, primary and backup need to agree



The View Service

Client Primary BackupOps Ops

View server
Who is primary?

Ping Ping



The View service

View server decides who is primary and backup 

- Clients and servers depend on view server 

The hard part: 

- Must be only one primary at a time 

- Clients shouldn’t communicate with view server on 
every request 

- Careful protocol design 

View server is a single point of failure (fixed in Lab 3)



On failure

Primary fails 

View server declares a new “view”, moves backup to 
primary 

View server promotes an idle server as new backup 

Primary initializes new backup’s state 

Now ready to process ops, OK if primary fails



“Views”

A view is a statement about the current roles in the 
system 

Views form a sequence in time

View 1 
Primary = A 
Backup = B

View 2 
Primary = B 
Backup = C

View 3 
Primary = C 
Backup = D



Detecting failure

Each server periodically pings (Ping RPC) view server 

To the view server, a node is 

- “dead” if missed n Pings 

- “live” after a single Ping 

Can a server ever be up but declared dead?



Managing servers
Any number of servers can send Pings 

- If more than two servers are live, extras are “idle” 

- Idle servers can be promoted to backup 

If primary dies 

- New view with old backup as primary, idle as backup 

If backup dies 

- New view with idle server as backup 

OK to have a view with a primary and no backup 

- But can lead to getting stuck later



View 1 
Primary = A 
Backup = B

View 2 
Primary = B 
Backup = C

View 3 
Primary = C 
Backup = _

A stops pinging

B immediately stops pinging

Can’t move to View 3 until C gets state 
How does view server know C has state?



Viewserver waits for primary ack

Track whether primary has acked (with ping) current 
view 

MUST stay with current view until ack 

Even if primary seems to have failed 

This is another weakness of this protocol



Question

Can more than one server think it is the primary at the 
same time?



Split brain

1:A,B

A is still up, but can’t reach view server 
(or is unlucky and pings get dropped)

2:B,_

B learns it is promoted to primary 
A still thinks it is primary



Split brain

Can more than one server act as primary? 

- Act as = respond to clients



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Incomplete state

1:A,B

A is still up, but can’t reach view server

2:C,D

C learns it is promoted to primary 
A still thinks it is primary 
C doesn’t know previous state



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



1. Missing writes

1:A,B

Client writes to A, receives response 
A crashes before writing to B

2:B,C

Client reads from B 
Write is missing



2. “Fast” Reads?

Does the primary need to forward reads to the 
backup? 

(This is a common “optimization”)



Stale reads

1:A,B

A is still up, but can’t reach view server

2:B,C

Client 1 writes to B 
Client 2 reads from A 
A returns outdated value



Reads vs. writes

Reads treated as state machine operations too 

But: can be executed more than once 

RPC library can handle them differently



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Partially split brain

1:A,B A forwards a request… 

2:B,C
Which arrives here



Old messages

1:A,B A forwards a request… 

2:B,C

3:C,A 

4:A,B 

Which arrives here



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Inconsistencies

1:A,B

2:B,C

Outdated client sends request to A 
A shouldn’t respond!

3:B,A



What about old messages to primary?

1:A,B

2:B,C

Outdated client sends request to A

3:B,A

4:A,D



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Inconsistencies

1:A,B

A starts sending state to B 
Client writes to A 
A forwards op to B 
A sends rest of state to B



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Progress

Are there cases when the system can’t make further 
progress (i.e. process new client requests)?



Progress

- View server fails 

- Network fails entirely (hard to get around this one) 

- Client can’t reach primary but it can ping VS 

- No backup and primary fails 

- Primary fails before completing state transfer



State transfer and RPCs

State transfer must include RPC data



Duplicate writes

1:A,B

Client writes to A 
A forwards to B 
A replies to client 
Reply is dropped

2:B,C

B transfers state to C, crashes

3:C,D

Client resends write. Duplicated!



One more corner case

1:A,B

View server stops hearing from A 
A and B, and clients, can still communicate

2:B,C

B hasn’t heard from view server 
Client in view 1 sends a request to A 
What should happen? 
Client in view 2 sends a request to B 
What should happen?



Replicated Virtual Machines

Whole system replication 

Completely transparent to applications and clients 

High availability for any existing software 

Challenge: Need state at backup to exactly mirror 
primary 

Restricted to a uniprocessor VMs



Deterministic Replay

Key idea: state of VM depends only on its input 

- Content of all input/output 

- Precise instruction of every interrupt 

- Only a few exceptions (e.g., timestamp instruction) 

Record all hardware events into a log 

- Modern processors have instruction counters and 
can interrupt after (precisely) x instructions 

- Trap and emulate any non-deterministic instructions



Replicated Virtual Machines
Replay I/O, interrupts, etc. at the backup 

- Backup executes events at primary with a lag 

- Backup stalls until it knows timing of next event 

- Backup does not perform external events 

Primary stalls until it knows backup has copy of every 
event up to (and incl.) output event 

- Then it is safe to perform output 

On failure, inputs/outputs will be replayed at backup 
(idempotent) 



Example
Primary receives network interrupt

hypervisor forwards interrupt plus data to backup

hypervisor delivers network interrupt to OS kernel

OS kernel runs, kernel delivers packet to server

server/kernel write response to network card

hypervisor gets control and sends response to backup

hypervisor delays sending response to client until backup acks

Backup receives log entries

backup delivers network interrupt

…

hypervisor does *not* put response on the wire

hypervisor ignores local clock interrupts


