
Logistics

• Canvas groups for Labs 
• Lab 1 due tomorrow 
• Section tomorrow for Lab 2 

• Due on Jan 31 
• Late days allowed 

• Problem set 1 will be released on Friday 
• Due on Jan 27 
• Late days not allowed



Question

Can more than one server think it is the primary at the 
same time?



Split brain

1:A,B

A is still up, but can’t reach view server 
(or is unlucky and pings get dropped)

2:B,_

B learns it is promoted to primary 
A still thinks it is primary



Split brain

Can more than one server act as primary? 

- Act as = respond to clients



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Incomplete state

1:A,B

A is still up, but can’t reach view server

2:C,D

C learns it is promoted to primary 
A still thinks it is primary 
C doesn’t know previous state



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



1. Missing writes

1:A,B

Client writes to A, receives response 
A crashes before writing to B

2:B,C

Client reads from B 
Write is missing



2. “Fast” Reads?

Does the primary need to forward reads to the 
backup? 

(This is a common “optimization”)



Stale reads

1:A,B

A is still up, but can’t reach view server

2:B,C

Client 1 writes to B 
Client 2 reads from A 
A returns outdated value



Reads vs. writes

Reads treated as state machine operations too 

But: can be executed more than once 

RPC library can handle them differently



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Partially split brain

1:A,B A forwards a request… 

2:B,C
Which arrives here



Old messages

1:A,B A forwards a request… 

2:B,C

3:C,A 

4:A,B 

Which arrives here



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Inconsistencies

1:A,B

2:B,C

Outdated client sends request to A 
A shouldn’t respond!

3:B,A



What about old messages to primary?

1:A,B

2:B,C

Outdated client sends request to A

3:B,A

4:A,D



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Inconsistencies

1:A,B

A starts sending state to B 
Client writes to A 
A forwards op to B 
A sends rest of state to B



Rules

1. Primary in view i+1 must have been backup or 
primary in view i 

2. Primary must wait for backup to accept/execute 
each op before doing op and replying to client 

3. Backup must accept forwarded requests only if 
view is correct 

4. Non-primary must reject client requests 

5. Every operation must be before or after state 
transfer



Progress

Are there cases when the system can’t make further 
progress (i.e. process new client requests)?



Progress

- View server fails 

- Network fails entirely (hard to get around this one) 

- Client can’t reach primary but it can ping VS 

- No backup and primary fails 

- Primary fails before completing state transfer



State transfer and RPCs

State transfer must include RPC data



Duplicate writes

1:A,B

Client writes to A 
A forwards to B 
A replies to client 
Reply is dropped

2:B,C

B transfers state to C, crashes

3:C,D

Client resends write. Duplicated!



One more corner case

1:A,B

View server stops hearing from A 
A and B, and clients, can still communicate

2:B,C

B hasn’t heard from view server 
Client in view 1 sends a request to A 
What should happen? 
Client in view 2 sends a request to B 
What should happen?



Replicated Virtual Machines

Whole system replication 

Completely transparent to applications and clients 

High availability for any existing software 

Challenge: Need state at backup to exactly mirror 
primary 

Restricted to uniprocessor VMs



Deterministic Replay

Key idea: state of VM depends only on its input 

- Content of all input/output 

- Precise instruction of every interrupt 

- Only a few exceptions (e.g., timestamp instruction) 

Record all hardware events into a log 

- Modern processors have instruction counters and 
can interrupt after (precisely) x instructions 

- Trap and emulate any non-deterministic instructions



Replicated Virtual Machines

Replay I/O, interrupts, etc. at the backup 

- Backup executes events at primary with a lag 

- Backup stalls until it knows timing of next event 

- Backup does not perform external events 

Primary stalls until it knows backup has copy of every 
event up to (and incl.) output event 

- Then it is safe to perform output 



Detailed Example
Primary receives network interrupt

hypervisor forwards interrupt plus data to backup

hypervisor delivers network interrupt to OS kernel

OS kernel runs, kernel delivers packet to server

server/kernel write response to network card

hypervisor delays sending response to client until backup acks

Backup receives log entries

backup delivers network interrupt

…

hypervisor does *not* put response on the wire

hypervisor ignores local clock interrupts


