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Lamport Clocks

Framework for reasoning about event ordering 

- notion of logical time vs. physical time 

- leads to causal ordering, vector clocks (e.g., git) 

- state machine replication



A Few Examples

Primary backup 

Consistency in distributed make 

Update ordering on social media 

Merging distributed event logs 



Replication w/ Event Ordering

Suppose we had a globally valid way to assign 
timestamps to events 

Clients label ops with timestamp 

Send ops directly to both primary and backup 

Primary and backup apply events in timestamp order 

Client safe when get ack from both 



Distributed Make

Distributed file servers hold source and object files 

Clients update files (with modification times) 

Make uses timestamps to decide what must be rebuilt 

- If object O depends on source S 

and O.time < S.time, rebuild O 

Depends on correctness of timestamp; what can go 
wrong?



Update Ordering

Silently block boss on twitter 

Tweet: “My boss is the worst, I need a new job!” 

Tweets and block/mute lists sharded across many 
servers 

Copies on many replicas, caches, across data centers 

How do you guarantee that no read sees the updates 
in the wrong order?



Example: Merging Event Logs

You have a large, complex distributed system 

Sometimes, things go wrong—bugs, bad client 
behavior, etc. 

You want to be able to debug! 

So, each node produces a (partial) event log



Physical Clocks

Label each event with its physical time 

- How closely can we approximate physical time? 

Building blocks 

- Server clock oscillator skews at 2s/month 

- Atomic clock: ns accuracy, expensive 

- GPS: 10ns accuracy, requires antenna  

- Network packets with variable network latency, 
scheduling delay



Physical Clocks: Beacon

Designate server with GPS/atomic clock as the master 

Master periodically broadcasts time 

Clients receive broadcast, reset their clock 

- Taking care so time never runs backwards 

How well does this work?



Network Latency

Network latency is unpredictable with a lower bound 



Client Driven Approach: NTP, PTP

Client queries server 

Time = server’s clock + 1/2 round trip 

Average over several servers; throw out outliers 

In between queries, adjust for measured clock skew



Fine-Grained Physical Clocks

Timestamps taken in hardware on the network interface 

Eliminate samples that involve any network queueing 

Continually re-estimate clock skew 

- Skew is temperature dependent 

Connect all servers in data center into a mesh 

- average all neighbors (mostly short hops) 

Accuracy ~ 100ns in the worst case



Logical Clocks

Way to assign timestamps to events 

- Globally valid, such that it respects causality 

- Using only local information 

- No physical clock 

What does it mean for a to happen before b?



Happens-before

1. Happens earlier at same location 

2. Transmission before receipt 

3. Transitivity



Example

S1 S2 S3

A

B

send M

recv M

C
send M’

recv M’
D

E



Logical clock implementation

Keep a local clock T 

Increment T whenever an event happens 

Send clock value on all messages as Tm 

On message receipt: T = max(T, Tm) + 1



Example

S1 S2 S3

A (T = ?)

B  (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (T = 1)

B  (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (T = 1)

B  (T = ?)

send M (Tm = 2)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (T = 1)

B  (T = 3)

send M (Tm = 2)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (T = 1)

B  (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (T = 1)

B  (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (T = 1)

B  (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (T = 1)

B  (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = ?)
D (T = 1)

E (T = ?)



Example

S1 S2 S3

A (T = 1)

B  (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = 6)
D (T = 1)

E (T = ?)



Example

S1 S2 S3

A (T = 1)

B  (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = 6)
D (T = 1)

E (T = 7)



Goal of a logical clock

happens-before(A, B) -> T(A) < T(B) 

What about the converse? 

    I.e., if T(A) < T(B) then what?



Mutual exclusion

Use clocks to implement a lock 

- Using state machine replication 

Goals: 

- Only one process has the lock at a time 

- Requesting processes eventually acquire the lock 

Assumptions: 

- In-order point-to-point message delivery 

- No failures



Mutual exclusion implementation

Each message carries a timestamp Tm (and a seq #)  

Three message types: 

- request (broadcast) 

- release (broadcast) 

- acknowledge (on receipt) 

Each node’s state: 

- A queue of request messages, ordered by Tm 

- The latest message it has received from each node



Mutual exclusion implementation

On receiving a request: 

- Record message timestamp 

- Add request to queue 

On receiving a release: 

- Record message timestamp 

- Remove corresponding request from queue 

On receiving an acknowledge: 

- Record message timestamp



Mutual exclusion implementation

To acquire the lock: 

- Send request to everyone, including self 

- The lock is acquired when: 

- My request is at the head of my queue, and 

- I’ve received same or higher-timestamped 
messages from everyone 

- So my request must be the earliest



S1

S2

S3

Timestamp: 0 
Queue: [S1@0] 
S1max: 0 
S3max: 0

Timestamp: 0 
Queue: [S1@0] 
S2max: 0 
S3max: 0

Timestamp: 0 
Queue: [S1@0] 
S1max: 0 
S2max: 0



S1

S2

S3

Timestamp: 1 
Queue: [S1@0] 
S1max: 0 
S3max: 0

Timestamp: 0 
Queue: [S1@0] 
S2max: 0 
S3max: 0

Timestamp: 0 
Queue: [S1@0] 
S1max: 0 
S2max: 0

request@1 request@1



S1

S2

S3

Timestamp:1 
Queue: [S1@0; S2@1] 
S1max: 0 
S3max: 0

Timestamp: 2 
Queue: [S1@0; S2@1] 
S2max: 1 
S3max: 0

Timestamp: 2 
Queue: [S1@0; S2@1] 
S1max: 0 
S2max: 1



S1

S2

S3

Timestamp:1 
Queue: [S1@0; S2@1] 
S1max: 0 
S3max: 0

Timestamp: 3 
Queue: [S1@0; S2@1] 
S2max: 1 
S3max: 0

Timestamp: 3 
Queue: [S1@0; S2@1] 
S1max: 0 
S2max: 1

ack@3 ack@3



S1

S2

S3

Timestamp:4 
Queue: [S1@0; S2@1] 
S1max: 3 
S3max: 3

Timestamp: 3 
Queue: [S1@0; S2@1] 
S2max: 1 
S3max: 0

Timestamp: 3 
Queue: [S1@0; S2@1] 
S1max: 0 
S2max: 1



S1

S2

S3

Timestamp:4 
Queue: [S1@0; S2@1] 
S1max: 3 
S3max: 3

Timestamp: 4 
Queue: [S1@0; S2@1] 
S2max: 1 
S3max: 0

Timestamp: 3 
Queue: [S1@0; S2@1] 
S1max: 0 
S2max: 1

release@4

release@4



S1

S2

S3

Timestamp:5 
Queue: [S2@1] 
S1max: 4 
S3max: 3

Timestamp: 4 
Queue: [S2@1] 
S2max: 1 
S3max: 0

Timestamp: 5 
Queue: [S2@1] 
S1max: 4 
S2max: 1



S1

S2

S3

Timestamp:6 
Queue: [S2@1] 
S1max: 4 
S3max: 3

Timestamp: 4 
Queue: [S2@1] 
S2max: 1 
S3max: 0

Timestamp: 6 
Queue: [S2@1] 
S1max: 4 
S2max: 1

ack@6

ack@6



S1

S2

S3

Timestamp:6 
Queue: [S2@1] 
S1max: 4 
S3max: 3

Timestamp: 6 
Queue: [S2@1] 
S2max: 6 
S3max: 6

Timestamp: 6 
Queue: [S2@1] 
S1max: 4 
S2max: 1



Questions

• What happens if you don’t have in-order delivery? 
• What happens if you eliminate the ack for the 

request? 
• What happens when nodes fail?



Generic State Machine Replication (SMR)

In mutual exclusion: 
• State: queue of processes who want the lock 
• Commands: Pi requests, Pi releases 

Approach generalizes to other “state machines" 

Process a command iff we’ve seen all commands w/ 
lower timestamp 



Lamport paper discussion

What happens when we need to add a process? 

How can we separate out concurrent events that just 
happened to have a certain ordering for their times?


