
Lamport Clocks
CSE 452

Lamport Clocks

Framework for reasoning about event ordering

- notion of logical time vs. physical time

- leads to causal ordering, vector clocks (e.g., git)

- state machine replication

A Few Examples

Primary backup

Consistency in distributed make

Update ordering on social media

Merging distributed event logs

Replication w/ Event Ordering

Suppose we had a globally valid way to assign
timestamps to events

Clients label ops with timestamp

Send ops directly to both primary and backup

Primary and backup apply events in timestamp order

Client safe when get ack from both

Distributed Make

Distributed file servers hold source and object files

Clients update files (with modification times)

Make uses timestamps to decide what must be rebuilt

- If object O depends on source S

and O.time < S.time, rebuild O

Depends on correctness of timestamp; what can go
wrong?

Update Ordering

Silently block boss on twitter

Tweet: “My boss is the worst, I need a new job!”

Tweets and block/mute lists sharded across many
servers

Copies on many replicas, caches, across data centers

How do you guarantee that no read sees the updates
in the wrong order?

Example: Merging Event Logs

You have a large, complex distributed system

Sometimes, things go wrong—bugs, bad client
behavior, etc.

You want to be able to debug!

So, each node produces a (partial) event log

Physical Clocks

Label each event with its physical time

- How closely can we approximate physical time?

Building blocks

- Server clock oscillator skews at 2s/month

- Atomic clock: ns accuracy, expensive

- GPS: 10ns accuracy, requires antenna

- Network packets with variable network latency,
scheduling delay

Physical Clocks: Beacon

Designate server with GPS/atomic clock as the master

Master periodically broadcasts time

Clients receive broadcast, reset their clock

- Taking care so time never runs backwards

How well does this work?

Network Latency

Network latency is unpredictable with a lower bound

Client Driven Approach: NTP, PTP

Client queries server

Time = server’s clock + 1/2 round trip

Average over several servers; throw out outliers

In between queries, adjust for measured clock skew

Fine-Grained Physical Clocks

Timestamps taken in hardware on the network interface

Eliminate samples that involve any network queueing

Continually re-estimate clock skew

- Skew is temperature dependent

Connect all servers in data center into a mesh

- average all neighbors (mostly short hops)

Accuracy ~ 100ns in the worst case

Logical Clocks

Way to assign timestamps to events

- Globally valid, such that it respects causality

- Using only local information

- No physical clock

What does it mean for a to happen before b?

Happens-before

1. Happens earlier at same location

2. Transmission before receipt

3. Transitivity

Example

S1 S2 S3

A

B

send M

recv M

C
send M’

recv M’
D

E

Logical clock implementation

Keep a local clock T

Increment T whenever an event happens

Send clock value on all messages as Tm

On message receipt: T = max(T, Tm) + 1

Example

S1 S2 S3

A (T = ?)

B (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = ?)

send M (Tm = 2)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = ?)
D (T = 1)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = 6)
D (T = 1)

E (T = ?)

Example

S1 S2 S3

A (T = 1)

B (T = 3)

send M (Tm = 2)

recv M (T = 3)

C (T = 4)
send M’ (Tm = 5)

recv M’ (T = 6)
D (T = 1)

E (T = 7)

Goal of a logical clock

happens-before(A, B) -> T(A) < T(B)

What about the converse?

 I.e., if T(A) < T(B) then what?

Mutual exclusion

Use clocks to implement a lock

- Using state machine replication

Goals:

- Only one process has the lock at a time

- Requesting processes eventually acquire the lock

Assumptions:

- In-order point-to-point message delivery

- No failures

Mutual exclusion implementation

Each message carries a timestamp Tm (and a seq #)

Three message types:

- request (broadcast)

- release (broadcast)

- acknowledge (on receipt)

Each node’s state:

- A queue of request messages, ordered by Tm

- The latest message it has received from each node

Mutual exclusion implementation

On receiving a request:

- Record message timestamp

- Add request to queue

On receiving a release:

- Record message timestamp

- Remove corresponding request from queue

On receiving an acknowledge:

- Record message timestamp

Mutual exclusion implementation

To acquire the lock:

- Send request to everyone, including self

- The lock is acquired when:

- My request is at the head of my queue, and

- I’ve received same or higher-timestamped
messages from everyone

- So my request must be the earliest

S1

S2

S3

Timestamp: 0
Queue: [S1@0]
S1max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S2max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S1max: 0
S2max: 0

S1

S2

S3

Timestamp: 1
Queue: [S1@0]
S1max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S2max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S1max: 0
S2max: 0

request@1 request@1

S1

S2

S3

Timestamp:1
Queue: [S1@0; S2@1]
S1max: 0
S3max: 0

Timestamp: 2
Queue: [S1@0; S2@1]
S2max: 1
S3max: 0

Timestamp: 2
Queue: [S1@0; S2@1]
S1max: 0
S2max: 1

S1

S2

S3

Timestamp:1
Queue: [S1@0; S2@1]
S1max: 0
S3max: 0

Timestamp: 3
Queue: [S1@0; S2@1]
S2max: 1
S3max: 0

Timestamp: 3
Queue: [S1@0; S2@1]
S1max: 0
S2max: 1

ack@3 ack@3

S1

S2

S3

Timestamp:4
Queue: [S1@0; S2@1]
S1max: 3
S3max: 3

Timestamp: 3
Queue: [S1@0; S2@1]
S2max: 1
S3max: 0

Timestamp: 3
Queue: [S1@0; S2@1]
S1max: 0
S2max: 1

S1

S2

S3

Timestamp:4
Queue: [S1@0; S2@1]
S1max: 3
S3max: 3

Timestamp: 4
Queue: [S1@0; S2@1]
S2max: 1
S3max: 0

Timestamp: 3
Queue: [S1@0; S2@1]
S1max: 0
S2max: 1

release@4

release@4

S1

S2

S3

Timestamp:5
Queue: [S2@1]
S1max: 4
S3max: 3

Timestamp: 4
Queue: [S2@1]
S2max: 1
S3max: 0

Timestamp: 5
Queue: [S2@1]
S1max: 4
S2max: 1

S1

S2

S3

Timestamp:6
Queue: [S2@1]
S1max: 4
S3max: 3

Timestamp: 4
Queue: [S2@1]
S2max: 1
S3max: 0

Timestamp: 6
Queue: [S2@1]
S1max: 4
S2max: 1

ack@6

ack@6

S1

S2

S3

Timestamp:6
Queue: [S2@1]
S1max: 4
S3max: 3

Timestamp: 6
Queue: [S2@1]
S2max: 6
S3max: 6

Timestamp: 6
Queue: [S2@1]
S1max: 4
S2max: 1

Questions

• What happens if you don’t have in-order delivery?
• What happens if you eliminate the ack for the

request?
• What happens when nodes fail?

Generic State Machine Replication (SMR)

In mutual exclusion:
• State: queue of processes who want the lock
• Commands: Pi requests, Pi releases

Approach generalizes to other “state machines"

Process a command iff we’ve seen all commands w/
lower timestamp

Lamport paper discussion

What happens when we need to add a process?

How can we separate out concurrent events that just
happened to have a certain ordering for their times?

