
Remote	Procedure	Call

Arvind	Krishnamurthy



Course	Logistics

• Everyone	should	have	a	gitlab	account	

• Let	us	know	if	you	don’t	have	one	

• Make	sure	you	have	signed	up	for	Piazza	

• Lab	1	due	next	Thursday	

• Submission	through	Canvas	

• Blog	post	for	Friday’s	reading	

• Submission	through	Canvas



Muddy	Foreheads

• 𝑛	children,	𝑘	get	mud	on	their	
foreheads	

• Children	sit	in	circle.	

• Teacher	announces,	"Someone	
has	mud	on	their	forehead."	

• Someone	==	1	or	more	

• No	on	can	see	their	own	
forehead	

• 𝑘	is	not	“common	
knowledge”



Muddy	Foreheads

• 𝑛	children,	𝑘	get	mud	on	their	
foreheads	

• Children	sit	in	circle.	

• Teacher	announces,	"Someone	
has	mud	on	their	forehead."	

• Teacher	repeatedly	asks,	
"Raise	your	hand	if		you	know	
you	have	mud	on	your	
forehead."	

• What	happens?



Muddy	Foreheads

• 𝑛	children,	𝑘	get	mud	on	their	
foreheads	

• Children	sit	in	circle.	

• Teacher	announces,	"Someone	
has	mud	on	their	forehead."	

• Teacher	repeatedly	asks,	
"Raise	your	hand	if		you	know	
you	have	mud	on	your	
forehead."	

• What	happens?



Muddy	Foreheads

• 𝑛	children,	𝑘	get	mud	on	their	
foreheads	

• Children	sit	in	circle.	

• Teacher	announces,	"Someone	
has	mud	on	their	forehead."	

• Teacher	repeatedly	asks,	
"Raise	your	hand	if		you	know	
you	have	mud	on	your	
forehead."	

• What	happens?

X

Y



Muddy	Foreheads

• 𝑛	children,	𝑘	get	mud	on	their	
foreheads	

• Children	sit	in	circle.	

• Teacher	announces,	"Someone	
has	mud	on	their	forehead."	

• Teacher	repeatedly	asks,	
"Raise	your	hand	if		you	know	
you	have	mud	on	your	
forehead."	

• What	happens?

X

Y

Z



Muddy	Foreheads	(contd.)

• Claim:		

– The	first	k-1	times	the	teacher	asks,	all	children	will	reply	“No”	

– The	k-th	time	all	dirty	children	will	reply	“Yes”	

• Reasoning	by	considering	cases	and	using	induction:	

– k=1:	the	child	with	a	muddy	forehead	will	say	yes	
– k=2:	let	X	and	Y	have	muddy	foreheads	

• Each	sees	exactly	one	other	person	with	muddy	forehead	

• In	round	1,	X	noticed	Y	didn’t	say	“Yes”	

–Possible	only	because	Y	must	have	seen	a	child	with	a	
muddy	forehead	==>	X	must	have	mud



The	Muddy	Forehead	"Paradox"

If 𝑘>1, the teacher didn't say anything 
anyone didn't already know!



Why	Are	Distributed	Systems	Hard?

• Asynchrony	
– Different	nodes	run	at	different	speeds		

– Messages	can	be	unpredictably,	arbitrarily	delayed	

• Failures	(partial	and	ambiguous)	
– Parts	of	the	system	can	crash	

– Can’t	tell	crash	from	slowness	

• Concurrency	and	consistency	
– Replicated	state,	cached	on	multiple	nodes	

– How	to	keep	many	copies	of	data	consistent?



Why	Are	Distributed	Systems	Hard?

• Performance	
– Have	to	efficiently	coordinate	many	machines	
– Performance	is	variable	and	unpredictable	
– Tail	latency:	only	as	fast	as	slowest	machine	

• Testing	and	verification	
– Almost	impossible	to	test	all	failure	cases	
– Proofs	(emerging	field)	are	really	hard	

• Security	
– Need	to	assume	adversarial	nodes



MapReduce	Computational	Model

For	each	key	k	with	value	v,	compute	a	new	set	of	key-
value	pairs:	
	 map	(k,v)	→	list(k’,v’)	
For	each	key	k’	and	list	of	values	v’,	compute	a	new	
(hopefully	smaller)	list	of	values:	
	 	reduce	(k’,list(v’))	→	list(v’’)	

User	writes	map	and	reduce	functions.	
Framework	takes	care	of	parallelism,	distribution,	and	
fault	tolerance.



MapReduce	(or	ML	or	…)	Architecture

• Scheduler	accepts	MapReduce	jobs	
– finds	a	MapReduce	master	and	set	of	avail	workers	

• For	each	job,	MapReduce	master	<array>	
– farms	tasks	to	workers;	restarts	failed	jobs;	syncs	task	
completion	

• Worker	<array>	
– executes	Map	and	Reduce	tasks		

• Storage	<array>	
– stores	initial	data	set,	intermediate	files,	end	results



Remote	Procedure	Call	(RPC)

A	request	from	the	client	to	execute	a	function	
on	the	server.	
– To	the	client,	looks	like	a	procedure	call	

– To	the	server,	looks	like	an	implementation	of	a	
procedure	call



Remote	Procedure	Call	(RPC)

A	request	from	the	client	to	execute	a	function	on	the	server.	
• On	client	
– Ex:	result	=	DoMap(worker,	i)	
– Parameters	marshalled	into	a	message	(can	be	arbitrary	types)	
– Message	sent	to	server	(can	be	multiple	pkts)	
– Wait	for	reply	

• On	server	
– message	is	parsed	
– operation	DoMap(i)	invoked	
– Result	marshalled	into	a	message	(can	be	multiple	pkts)	
– Message	sent	to	client



RPC	library

Read	data	
Deserialize	args

Transport

CSE	461

RPC	implementation

DoMap(worker, i) Map(worker, i)

RPC	library

Serialize	args	
Open	connection	
Write	data

Read	data	
Deserialize	reply

Serialize	reply	
Write	data

Transport

OS

TCP/IP	write

OS

TCP/IP	readTCP/IP	writeTCP/IP	read

x x
x



RPC	vs.	Procedure	Call

• What	is	equivalent	of:	
– The	name	of	the	procedure?	

– The	calling	convention?	
– The	return	value?	
– The	return	address?



RPC	vs.	Procedure	Call

Binding	
– Client	needs	a	connection	to	server	
– Server	must	implement	the	required	function	
– What	if	the	server	is	running	a	different	version	of	

the	code?	

Performance	
– 		procedure	call:	maybe	10	cycles	=	~3	ns	
– 		RPC	in	data	center:	10	microseconds	=>	~1K	
slower	

– 		RPC	in	the	wide	area:	millions	of	times	slower



RPC	vs.	Procedure	Call

Failures	
–What	happens	if	messages	get	dropped?	

–What	if	client	crashes?	

–What	if	server	crashes?	

–What	if	server	crashes	after	performing	op	but	
before	replying?	

–What	if	server	appears	to	crash	but	is	slow?	

–What	if	network	partitions?



Semantics

• Semantics	=	meaning	

• reply	==	ok	=>	???	

• reply	!=	ok	=>	???



Semantics

• At	least	once	(NFS,	DNS)	
– true:	executed	at	least	once	
– false:		maybe	executed,	maybe	multiple	times	

• At	most	once	
– true:	executed	once	
– false:		maybe	executed,	but	never	more	than	once	

• Exactly	once	
– true:	executed	once	
– false:	never	returns	false



At	Least	Once

RPC	library	waits	for	response	for	a	while	

If	none	arrives,	re-send	the	request	

Do	this	a	few	times	

Still	no	response	--	return	an	error	to	the	
application



Non-replicated	key/value	server

Client	sends	Put	k	v	

Server	gets	request,	but	network	drops	reply	

Client	sends	Put	k	v	again	
– 		should	server	respond	"yes"?	
– 		or	"no"?	

What	if	op	is	“append”?



Does	TCP	Fix	This?

• TCP:	reliable	bi-directional	byte	stream	between	
two	endpoints	
– Retransmission	of	lost	packets	

– Duplicate	detection	

• But	what	if	TCP	times	out	and	client	reconnects?	
– Browser	connects	to	Amazon	

– RPC	to	purchase	book	

– Wifi	times	out	during	RPC	

– Browser	reconnects



When	does	at-least-once	work?

• If	no	side	effects	
– read-only	operations	(or	idempotent	ops)	

• Example:	MapReduce	

• Example:	NFS	
– readFileBlock	
– writeFileBlock



At	Most	Once

Client	includes	unique	ID	(UID)	with	each	request	
– use	same	UID	for	re-send	

Server	RPC	code	detects	duplicate	requests	
– return	previous	reply	instead	of	re-running	handler	
if	seen[uid]	{	
						r	=	old[uid]	
}	else	{	
						r	=	handler()	
						old[uid]	=	r	
						seen[uid]	=	true	
}



Some	At-Most-Once	Issues

How	do	we	ensure	UID	is	unique?	
– Big	random	number?	

– Combine	unique	client	ID	(IP	address?)	with	seq	#?	

– What	if	client	crashes	and	restarts?		Can	it	reuse	the	
same	UID?	

– In	labs,	nodes	never	restart	

– Equivalent	to:	every	node	gets	new	ID	on	start



When	Can	Server	Discard	Old	RPCs?

Option	1:	
	 Never?	
Option	2:	
						unique	client	IDs	
						per-client	RPC	sequence	numbers	
						client	includes	"seen	all	replies	<=	X"	with	every	RPC	
Option	3:	only	allow	client	one	outstanding	RPC	at	a	time	
						arrival	of	seq+1	allows	server	to	discard	all	<=	seq	
Labs	use	Option	3



What	if	Server	Crashes?

If	at-most-once	list	of	recent	RPC	results	is	stored	
in	memory,	server	will	forget	and	accept	duplicate	
requests	when	it	reboots	
– Does	server	need	to	write	the	recent	RPC	results	to	

disk?	
– If	replicated,	does	replica	also	need	to	store	recent	

RPC	results?	

In	Labs,	server	gets	new	address	on	restart	
– 	 Client	messages	aren’t	delivered	to	restarted	
server


